Prediction of pK(a) values of neutral and alkaline drugs with particle swarm optimization algorithm and artificial neural network

被引:13
|
作者
Chen, Bingsheng [1 ]
Zhang, Huaijin [1 ]
Li, Mengshan [1 ]
机构
[1] Gannan Normal Univ, Coll Phys & Elect Informat, Ganzhou, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2019年 / 31卷 / 12期
基金
中国国家自然科学基金;
关键词
pKa value; Particle swarm optimization; Back propagation; Artificial neural network; SUPERCRITICAL CARBON-DIOXIDE; BASIC DRUGS; SOLUBILITY PREDICTION; GENETIC ALGORITHM; COLONY ALGORITHM; MACHINE; MODEL; PSO; PERFORMANCE;
D O I
10.1007/s00521-018-3956-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A prediction model of pKa values of neutral and alkaline drugs based on particle swarm optimization algorithm and back propagation artificial neural network, called PSO-BP ANN, was established. PSO-BP ANN model was proposed using back propagation artificial neural network trained by particle swarm optimization algorithm, and used to predict the pKa values. The five parameters, including relative N atom number, Randic index (order 3), relative negative charge, relative negative charge surface area and maximum atomic net charge, were selected by particle swarm optimization algorithm and used as input variables of the model. The output variable in the proposed model was pKa values. The experimental results showed that the three layers (5-7-1) prediction model had a good prediction performance. The absolute mean relative error, root mean square error of prediction and square correlation coefficient were 0.5728, 0.0512 and 0.9169, respectively. The pKa values of neutral and alkaline drugs were positively correlated with the value of maximum atomic net charge, but the pKa value decreased with the increase in the other four parameters.
引用
收藏
页码:8297 / 8304
页数:8
相关论文
共 50 条
  • [21] The lead recovery prediction from lead concentrate by an artificial neural network and particle swarm optimization
    Sobouti, Arash
    Hoseinian, Fatemeh Sadat
    Rezai, Bahram
    Jalili, Sara
    GEOSYSTEM ENGINEERING, 2019, 22 (06) : 319 - 327
  • [22] Driving Time Prediction at Freeway Interchanges Using Artificial Neural Network and Particle Swarm Optimization
    Hamid Behbahani
    Sayyed Mohsen Hosseini
    Seyed Alireza Samerei
    Alireza Taherkhani
    Hemin Asadi
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2020, 44 : 975 - 989
  • [23] Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA
    Huang, Jun
    Mei, Le-He
    Xia, Jiang
    BIOTECHNOLOGY AND BIOENGINEERING, 2007, 96 (05) : 924 - 931
  • [24] Study on Network Flow Prediction Model Based on Particle Swarm Optimization Algorithm and RBF Neural Network
    Bin, Zhang Yu
    Zhong, Lin Li
    Ming, Zhang Ya
    ICCSIT 2010 - 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, 2010, : 302 - 306
  • [25] Reliability Prediction of the Distribution Network Based on Wavelet Neural Network with Quantum Particle Swarm Optimization Algorithm
    Ling, Chengxiang
    Li, Tianyu
    Lu, Mengke
    Zhou, Xiaobo
    Wu, Ye
    Su, Yijing
    Gao, Xinyue
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2023, 51 (04) : 398 - 408
  • [26] Application of Particle Swarm Optimization Algorithm in Computer Neural Network
    Li, Xueyan
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS, ELECTRONICS AND CONTROL (ICCSEC), 2017, : 446 - 449
  • [27] Application of Particle Swarm Algorithm to Optimization of PID Neural Network
    Yuan, Chi
    2011 AASRI CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRY APPLICATION (AASRI-AIIA 2011), VOL 2, 2011, : 182 - 184
  • [28] Application of Particle Swarm Algorithm to Optimization of BP Neural Network
    Zhang, Ling
    2011 AASRI CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRY APPLICATION (AASRI-AIIA 2011), VOL 2, 2011, : 176 - 178
  • [29] Particle swarm optimization algorithm design for fuzzy neural network
    Ma, Ming
    Zhang, Li-Biao
    FUZZY INFORMATION AND ENGINEERING, PROCEEDINGS, 2007, 40 : 309 - +
  • [30] BP Neural Network Trained by Particle Swarm Optimization Algorithm
    Niu Hai-qing
    Wu Ju-zhuo
    Ye Kai-fa
    2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2014, : 1616 - 1621