Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries

被引:172
|
作者
Liu, Han-Chang [1 ]
Yen, Shiow-Kang [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Mat Engn, Taichung 40227, Taiwan
关键词
electrolytic deposition; nano-sized Co3O4; thin film; Raman spectroscopy;
D O I
10.1016/j.jpowsour.2007.01.072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrolytic deposition of Co3O4 thin films on stainless steel was conducted in Co(NO3)(2) aqueous solution for anodes in lithium-ion thin film batteries. Three major electrochemical reactions during the deposition were discussed. The coated specimens and the coating films carried out at -1.0 V (saturated KCl Ag/AgCl) were subjected to annealing treatments and further characterized by XRD, TGA/DTA, FE-SEM, Raman spectroscopy, cyclic voltammetry (CV) and discharge/charge cyclic tests. The as-coated film was beta-Co(OH)(2), condensed into CoO and subsequently oxidized into nano-sized Co3O4 particles. The nano-sized Co3O4, CoO, Li2O and Co particles revealed their own characteristics different from micro-sized ones, such as more interfacial effects on chemical bonding and crystallinity. The initial maximum capacity Of Co3O4 coated specimen was 1930 mAh g(-1) which much more than its theoretical value 890 mAh g(-1), since the nano-sized particles offered more interfacial bondings for extra sites of Li+ insertion. However, a large ratio of them was trapped, resulting in a great part of irreversible capacity during the first charging. Still, it revealed a capacity 500 mAh g(-1) after 50 discharged-charged cycles. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:478 / 484
页数:7
相关论文
共 50 条
  • [21] Electrochemical Performance of Co3O4 Nanofibers As Anode Material for Lithium-Ion Batteries
    Dai, Jianfeng
    Zhu, Xiaojun
    Liu, Jifei
    Wang, Qing
    Li, Weixue
    Qi, Yufeng
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 93 (10) : 2067 - 2071
  • [22] Electrochemical Performance of Co3O4 Nanofibers As Anode Material for Lithium-Ion Batteries
    Xiaojun Jianfeng Dai
    Jifei Zhu
    Qing Liu
    Weixue Wang
    Yufeng Li
    Russian Journal of Physical Chemistry A, 2019, 93 : 2067 - 2071
  • [23] Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries
    Liu, Yan
    Mi, Changhuan
    Su, Linghao
    Zhang, Xiaogang
    ELECTROCHIMICA ACTA, 2008, 53 (05) : 2507 - 2513
  • [24] MOF-Derived Vertically Aligned Mesoporous Co3O4 Nanowires for Ultrahigh Capacity Lithium-Ion Batteries Anodes
    Ma, Yuanyuan
    He, Jiating
    Kou, Zongkui
    Elshahawy, Abdelnaby M.
    Hu, Yating
    Guan, Cao
    Li, Xu
    Wang, John
    ADVANCED MATERIALS INTERFACES, 2018, 5 (14):
  • [25] Porous Co3O4/CuO Composite Assembled from Nanosheets as High-Performance Anodes for Lithium-Ion Batteries
    Hao, Qin
    Zhao, Dianyun
    Duan, Huimei
    Xu, Caixia
    ChemSusChem, 2015, 8 (08) : 1435 - 1441
  • [26] Fabrication of Hollow Co3O4 Nanospheres and Their Nanocomposites of CNT and rGO as High-Performance Anodes for Lithium-Ion Batteries
    Kesavan, Thangaian
    Gunawardhana, Nanda
    Senthil, Chenrayan
    Kundu, Manab
    Maduraiveeran, Govindhan
    Yoshio, Masaki
    Sasidharan, Manickam
    CHEMISTRYSELECT, 2018, 3 (20): : 5502 - 5511
  • [27] High performance of Co3O4@carbon composites as anodes for Lithium-ion batteries
    Xie, Huan
    Yang, Guang
    Cai, Zhenyu
    Lia, Ze
    Wang, Yinwei
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2022, 97 (08) : 2109 - 2113
  • [28] Synergistic effect between ZnCo2O4 and Co3O4 induces superior electrochemical performance as anodes for lithium-ion batteries
    Tomar, Anubha
    Zulkifli
    Singh, Jay
    Singh, Satendra Pal
    Kim, Jaekook
    Rai, Alok Kumar
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (17) : 13152 - 13163
  • [29] Studies of Nano-sized Co3O4 as Anode Materials for Lithium-ion Batteries
    黄峰
    詹晖
    周运鸿
    Chinese Journal of Chemistry, 2003, (10) : 1275 - 1279
  • [30] Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries
    Zhai, Ximei
    Xu, Xiangming
    Zhu, Xiaoliang
    Zhao, Yongjie
    Li, Jingbo
    Jin, Haibo
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (02) : 1356 - 1364