Knowledge-light adaptation approaches in case-based reasoning for radiotherapy treatment planning

被引:28
|
作者
Petrovic, Sanja [1 ]
Khussainova, Gulmira [1 ]
Jagannathan, Rupa [1 ]
机构
[1] Univ Nottingham, Sch Business, Operat Management & Informat Syst Div, Nottingham NG8 1BB, England
基金
英国工程与自然科学研究理事会;
关键词
Case-based reasoning; Adaptation-guided retrieval; Machine-learning tools; Radiotherapy treatment planning; MODULATED RADIATION-THERAPY; OPTIMIZATION;
D O I
10.1016/j.artmed.2016.01.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Objective: Radiotherapy treatment planning aims at delivering a sufficient radiation dose to cancerous tumour cells while sparing healthy organs in the tumour-surrounding area. It is a time-consuming trial and-error process that requires the expertise of a group of medical experts including oncologists and medical physicists and can take from 2 to 3 h to a few days. Our objective is to improve the performance of our previously built case-based reasoning (CBR) system for brain tumour radiotherapy treatment planning. In this system, a treatment plan for a new patient is retrieved from a case base containing patient cases treated in the past and their treatment plans. However, this system does not perform any adaptation, which is needed to account for any difference between the new and retrieved cases. Generally, the adaptation phase is considered to be intrinsically knowledge-intensive and domain-dependent. Therefore, an adaptation often requires a large amount of domain-specific knowledge, which can be difficult to acquire and often is not readily available. In this study, we investigate approaches to adaptation that do not require much domain knowledge, referred to as knowledge-light adaptation. Methodology: We developed two adaptation approaches: adaptation based on machine-learning tools and adaptation-guided retrieval. They were used to adapt the beam number and beam angles suggested in the retrieved case. Two machine-learning tools, neural networks and naive Bayes classifier, were used in the adaptation to learn how the difference in attribute values between the retrieved and new cases affects the output of these two cases. The adaptation-guided retrieval takes into consideration not only the similarity between the new and retrieved cases, but also how to adapt the retrieved case. Results: The research was carried out in collaboration with medical physicists at the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. All experiments were performed using real world brain cancer patient cases treated with three-dimensional (3D)-conformal radiotherapy. Neural networks-based adaptation improved the success rate of the CBR system with no adaptation by 12%. However, naive Bayes classifier did not improve the current retrieval results as it did not consider the interplay among attributes. The adaptation-guided retrieval of the case for beam number improved the success rate of the CBR system by 29%. However, it did not demonstrate good performance for the beam angle adaptation. Its success rate was 29% versus 39% when no adaptation was performed. Conclusions: The obtained empirical results demonstrate that the proposed adaptation methods improve the performance of the existing CBR system in recommending the number of beams to use. However, we also conclude that to be effective, the proposed adaptation of beam angles requires a large number of relevant cases in the case base. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [31] Representing incomplete knowledge in case-based reasoning
    Dubitzky, W
    Lopes, P
    Hughes, JG
    Bell, DA
    White, J
    INTERNATIONAL SOCIETY FOR COMPUTERS AND THEIR APPLICATIONS 11TH INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS IN INDUSTRY AND ENGINEERING, 1998, : 133 - 136
  • [32] Case-based reasoning systems for knowledge mediation
    Griffiths, AD
    Harrison, MD
    Dearden, AM
    HUMAN-COMPUTER INTERACTION - INTERACT '99, 1999, : 425 - 433
  • [33] The application of case-based reasoning in knowledge management
    Wang, FK
    ED-MEDIA 2004: WORLD CONFERENCE ON EDUCATIONAL MULTIMEDIA, HYPERMEDIA & TELECOMMUNICATIONS, VOLS. 1-7, 2004, : 554 - 559
  • [34] The search for knowledge, contexts, and Case-Based Reasoning
    Richter, Michael M.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2009, 22 (01) : 3 - 9
  • [35] Knowledge-based treatment planning for adolescent early intervention of mental healthcare: a hybrid case-based reasoning approach
    Wang, W. M.
    Cheung, C. F.
    Lee, W. B.
    Kwok, S. K.
    EXPERT SYSTEMS, 2007, 24 (04) : 232 - 251
  • [36] Knowledge Induction based on Randomization in Case-Based Reasoning
    Bouabana-Tebibel, Thouraya
    Rubin, Stuart H.
    Chebba, Asmaa
    Bediar, Sofiane
    Iskounen, Syphax
    PROCEEDINGS OF 2016 IEEE 17TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IEEE IRI), 2016, : 541 - 548
  • [37] A knowledge based machine tool maintenance planning system using case-based reasoning techniques
    Shan, Wan
    Li Dongbo
    Gao, James
    Jing, Li
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2019, 58 : 80 - 96
  • [38] Adaptation problems in therapeutic case-based reasoning systems
    Schmidt, R
    Vorobieva, O
    Gierl, L
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2003, 2773 : 992 - 999
  • [39] Compositional Adaptation of Explanations in Textual Case-Based Reasoning
    Sizov, Gleb
    Ozturk, Pinar
    Marsi, Erwin
    CASE-BASED REASONING RESEARCH AND DEVELOPMENT, ICCBR 2016, 2016, 9969 : 387 - 401
  • [40] Towards a unified theory of adaptation in case-based reasoning
    Fuchs, B
    Lieber, J
    Mille, A
    Napoli, A
    CASE-BASED REASONING RESEARCH AND DEVELOPMENT, 1999, 1650 : 104 - 117