A New Spatio-Temporal Neural Network Approach for Traffic Accident Forecasting

被引:3
|
作者
de Medrano, Rodrigo [1 ]
Aznarte, Jose L. [1 ]
机构
[1] Univ Nacl Educ Distancia UNED, Artificial Intelligence Dept, Madrid 28041, Spain
关键词
CRASH-FREQUENCY; OPTIMIZATION; CLASSIFICATION; SEVERITY; MODELS;
D O I
10.1080/08839514.2021.1935588
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic accidents forecasting represents a major priority for traffic governmental organisms around the world to ensure a decrease in life, property, and economic losses. The increasing amounts of traffic accident data have been used to train machine learning predictors, although this is a challenging task due to the relative rareness of accidents, inter-dependencies of traffic accidents both in time and space, and high dependency on human behavior. Recently, deep learning techniques have shown significant prediction improvements over traditional models, but some difficulties and open questions remain around their applicability, accuracy, and ability to provide practical information. This paper proposes a new spatio-temporal deep learning framework based on a latent model for simultaneously predicting the number of traffic accidents in each neighborhood in Madrid, Spain, over varying training and prediction time horizons.
引用
下载
收藏
页码:782 / 801
页数:20
相关论文
共 50 条
  • [21] Forecasting of mobile network traffic and spatio-temporal analysis using modLSTM
    Aski, Vidyadhar J.
    Chavan, Rugved Sanjay
    Dhaka, Vijaypal Singh
    Rani, Geeta
    Zumpano, Ester
    Vocaturo, Eugenio
    MACHINE LEARNING, 2024, 113 (04) : 2277 - 2300
  • [22] Traffic flow forecasting using a spatio-temporal Bayesian network predictor
    Sun, SL
    Zhang, CS
    Zhang, Y
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 273 - 278
  • [23] Spatio-Temporal Wireless Traffic Prediction With Recurrent Neural Network
    Qiu, Chen
    Zhang, Yanyan
    Feng, Zhiyong
    Zhang, Ping
    Cui, Shuguang
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (04) : 554 - 557
  • [24] PreSTNet: Pre-trained Spatio-Temporal Network for traffic forecasting
    Fang, Shen
    Ji, Wei
    Xiang, Shiming
    Hua, Wei
    INFORMATION FUSION, 2024, 106
  • [25] ASTHGCN: Adaptive Spatio-Temporal Hypergraph Convolutional Network for Traffic Forecasting
    Zhu, Chao
    Chen, Jing
    Zhu, Rui
    Wang, Zhengqiong
    Liu, Shihan
    Wang, Jishu
    2023 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING, SANER, 2023, : 972 - 979
  • [26] ASTHGCN: Adaptive Spatio-Temporal Hypergraph Convolutional Network for Traffic Forecasting
    Zhu, Chao
    Chen, Jing
    Zhu, Rui
    Wang, Zhengqiong
    Liu, Shihan
    Wang, Jishu
    Proceedings - 2023 IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER 2023, 2023, : 972 - 979
  • [27] Spatio-Temporal Graph Attention Convolution Network for Traffic Flow Forecasting
    Liu, Kun
    Zhu, Yifan
    Wang, Xiao
    Ji, Hongya
    Huang, Chengfei
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (09) : 136 - 149
  • [28] STANN: A Spatio-Temporal Attentive Neural Network for Traffic Prediction
    He, Zhixiang
    Chow, Chi-Yin
    Zhang, Jia-Dong
    IEEE ACCESS, 2019, 7 : 4795 - 4806
  • [29] DMGSTCN: Dynamic Multigraph Spatio-Temporal Convolution Network for Traffic Forecasting
    Qin, Yanjun
    Tao, Xiaoming
    Fang, Yuchen
    Luo, Haiyong
    Zhao, Fang
    Wang, Chenxing
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 22208 - 22219
  • [30] A Spatio-Temporal Tree and Gauss Convolutional Network for Traffic Flow Forecasting
    Ma, Zhaobin
    Lv, Zhiqiang
    Li, Jianbo
    Xia, Fengqian
    2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 722 - 729