Hyperedge Prediction Using Tensor Eigenvalue Decomposition

被引:7
|
作者
Maurya, Deepak [1 ]
Ravindran, Balaraman [1 ]
机构
[1] Indian Inst Technol Madras, Comp Sci & Engn Dept, Robert Bosch Ctr Data Sci & AI, Chennai, Tamil Nadu, India
关键词
Hypergraphs; Spectral hypergraph theory; Hyperedge prediction; Tensor eigenvalue decomposition; LINK-PREDICTION; NETWORKS;
D O I
10.1007/s41745-021-00225-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Link prediction in graphs is studied by modeling the dyadic interactions among two nodes. The relationships can be more complex than simple dyadic interactions and could require the user to model super-dyadic associations among nodes. Such interactions can be modeled using a hypergraph, which is a generalization of a graph where a hyperedge can connect more than two nodes. In this work, we consider the problem of hyperedge prediction in a k-uniform hypergraph. We utilize the tensor-based representation of hypergraphs and propose a novel interpretation of the tensor eigenvectors. This is further used to propose a hyperedge prediction algorithm. The proposed algorithm utilizes the Fiedler eigenvector computed using tensor eigenvalue decomposition of hypergraph Laplacian. The Fiedler eigenvector is used to evaluate the construction cost of new hyperedges, which is further utilized to determine the most probable hyperedges to be constructed. The functioning and efficacy of the proposed method are illustrated using some example hypergraphs and a few real datasets. The code for the proposed method is available on .
引用
收藏
页码:443 / 453
页数:11
相关论文
共 50 条
  • [31] Fetal electrocardiogram estimation using polynomial eigenvalue decomposition
    Redif, Soydan
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2016, 24 (04) : 2483 - 2497
  • [32] Joint Eigenvalue Decomposition Using Polar Matrix Factorization
    Luciani, Xavier
    Albera, Laurent
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, 2010, 6365 : 555 - 562
  • [33] FIXED BEAMFORMER DESIGN USING POLYNOMIAL EIGENVALUE DECOMPOSITION
    Neo, Vincent W.
    D'Olne, Emilie
    Moore, Alastair H.
    Naylor, Patrick A.
    2022 INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC 2022), 2022,
  • [34] Tensor eigenvalue complementarity problems
    Jinyan Fan
    Jiawang Nie
    Anwa Zhou
    Mathematical Programming, 2018, 170 : 507 - 539
  • [35] Matrix and tensor completion using tensor ring decomposition with sparse representation
    Asante-Mensah, Maame G.
    Ahmadi-Asl, Salman
    Cichocki, Andrzej
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [36] GENERALIZED TENSOR EIGENVALUE PROBLEMS
    Ding, Weiyang
    Wei, Yimin
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (03) : 1073 - 1099
  • [37] Tensor eigenvalue complementarity problems
    Fan, Jinyan
    Nie, Jiawang
    Zhou, Anwa
    MATHEMATICAL PROGRAMMING, 2018, 170 (02) : 507 - 539
  • [38] Robust tensor completion using transformed tensor singular value decomposition
    Song, Guangjing
    Ng, Michael K.
    Zhang, Xiongjun
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (03)
  • [39] Shifted eigenvalue decomposition method for computing C-eigenvalues of a piezoelectric-type tensor
    Chang Liang
    Yuning Yang
    Computational and Applied Mathematics, 2021, 40
  • [40] Shifted eigenvalue decomposition method for computing C-eigenvalues of a piezoelectric-type tensor
    Liang, Chang
    Yang, Yuning
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (07):