An Anisotropic Hydrogel Based on Mussel-Inspired Conductive Ferrofluid Composed of Electromagnetic Nanohybrids

被引:136
|
作者
Liu, Kezhi [1 ]
Han, Lu [1 ]
Tang, Pengfei [1 ]
Yang, Kaiming [1 ]
Gan, Donglin [1 ]
Wang, Xiao [1 ]
Wang, Kefeng [2 ]
Ren, Fuzeng [3 ]
Fan, Liming [4 ]
Xu, Yonggang [1 ]
Lu, Zhifeng
Lu, Xiong [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Sichuan, Peoples R China
[2] Res Ctr Mat Genome Engn, Natl Engn Res Ctr Biomat, Chengdu 610064, Sichuan, Peoples R China
[3] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[4] South China Univ Technol, Sch Mat Sci & Engn, Dept Polymer Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
基金
中国博士后科学基金;
关键词
Anisotropic hydrogels; mussel-inspired adhesive hydrogels; conductive hydrogels; ferrofluid; magnetic nanoparticles; carbon nanotube; WALLED CARBON NANOTUBES; IRON-OXIDE NANOPARTICLES; MAGNETITE NANOPARTICLES; MECHANICAL-PROPERTIES; ALIGNMENT; SURFACE; METAL; DEXTRAN; FUNCTIONALIZATION; POLYMERIZATION;
D O I
10.1021/acs.nanolett.9b00363
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Anisotropic hydrogels with a hierarchical structure can mimic biological tissues, such as neurons or muscles that show directional functions, which are important factors for signal transduction and cell guidance. Here, we report a mussel-inspired approach to fabricate an anisotropic hydrogel based on a conductive ferrofluid. First, polydopamine (PDA) was used to mediate the formation of PDA-chelated carbon nanotube-Fe3O4 (PFeCNT) nanohybrids and also used as a dispersion medium to stabilize the nanohybrids to form a conductive ferrofluid. The ferrofluid can respond to an orientated magnetic field and be programed to form aligned structures, which were then frozen in a hydrogel network formed via in situ free-radical polymerization and gelation. The resulted hydrogel shows directional conductive and mechanical properties, mimicking an oriented biological tissue. Under external electrical stimulation, the orientated PFeCNT nanohybrids can be sensed by the myoblasts cultured on the hydrogel, resulting in the oriented growth of cells. In summary, the mussel-inspired anisotropic hydrogel with its aligned structural complexity and anisotropic properties together with the cell affinity and tissue adhesiveness is a potent multifunctional biomaterial for mimicking oriented tissues to guide cell proliferation and tissue regeneration.
引用
收藏
页码:8343 / 8356
页数:14
相关论文
共 50 条
  • [31] Based on mussel-inspired modified BN fillers and their application in thermally conductive silica rubber
    Guo, Youkui
    Zhao, Xusheng
    Ma, Wenshi
    DIAMOND AND RELATED MATERIALS, 2023, 134
  • [32] Mussel-inspired nanocomposite hydrogel based on alginate and antimicrobial peptide for infected wound repair
    Zhang, Miao
    Zhang, Qi
    Chen, Xiangyan
    Jiang, Tianze
    Song, Panpan
    Wang, Bingjie
    Zhao, Xia
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 219 : 1087 - 1099
  • [33] Mussel-inspired wet-spun conductive fibers for stretchable electronics
    Wang, Renqiao
    Xie, Liping
    Zhang, Zelin
    Sun, Hongbin
    Xiao, Yiming
    COMPOSITES COMMUNICATIONS, 2025, 53
  • [34] Mussel-Inspired Biocompatible PAADOPA/PAAm Hydrogel Adhesive for Amoxicillin Delivery
    Xu, Chengyuan
    Chen, Yang
    Zheng, Zhiyuan
    Liu, Yongchun
    Cao, Song
    Xu, Yisheng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (30) : 13556 - 13563
  • [35] Mussel-Inspired Adhesive Nano-Filler for Strengthening Polyacrylamide Hydrogel
    J. Hossen, Md.
    Sarkar, Stephen D.
    Uddin, Md. M.
    Roy, Chanchal K.
    Azam, Md. S.
    CHEMISTRYSELECT, 2020, 5 (29): : 8906 - 8914
  • [36] Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis
    Cheng, Hao
    Yue, Kan
    Kazemzadeh-Narbat, Mehdi
    Liu, Yanhui
    Khalilpour, Akbar
    Li, Bingyun
    Zhang, Yu Shrike
    Annabi, Nasim
    Khademhosseini, Ali
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (13) : 11428 - 11439
  • [37] pH-regulated viscoelastic properties of mussel-inspired telechelic hydrogel
    Cazzell, Seth
    Holten-Andersen, Niels
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [38] Mussel-Inspired Adhesive, Antibacterial, and Stretchable Composite Hydrogel for Wound Dressing
    Chen, Ying
    Fan, Xiaokun
    Lu, Jiawei
    Liu, Xin
    Chen, Jin
    Chen, Yi
    MACROMOLECULAR BIOSCIENCE, 2023, 23 (01)
  • [39] Mussel-Inspired Hydrogel Composite with Multi-Stimuli Responsive Behavior
    Yan, Yun-Hui
    Rong, Li-Han
    Ge, Jin
    Tiu, Brylee David B.
    Cao, Peng-Fei
    Advincula, Rigoberto C.
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2019, 304 (07)
  • [40] A Mussel-Inspired Conductive, Self-Adhesive, and Self-Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics
    Han, Lu
    Lu, Xiong
    Wang, Menghao
    Gan, Donglin
    Deng, Weili
    Wang, Kefeng
    Fang, Liming
    Liu, Kezhi
    Chan, Chun Wai
    Tang, Youhong
    Weng, Lu-Tao
    Yuan, Huipin
    SMALL, 2017, 13 (02)