Generalized skew derivations and generalization of commuting maps on prime rings

被引:3
|
作者
De Filippis, Vincenzo [1 ]
Dhara, Basudeb [2 ]
Bera, Nripendu [3 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] Belda Coll, Dept Math, Belda 721424, WB, India
[3] Jadavpur Univ, Dept Math, Kolkata 700032, WB, India
关键词
Derivation; Generalized derivation; Generalized skew derivation; Prime ring; MULTILINEAR POLYNOMIALS; IDENTITIES; VALUES;
D O I
10.1007/s13366-021-00590-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring of characteristic different from 2, Q(r) be the right Martindale quotient ring of R and C = Z(Q(r)) be the extended centroid of R. Suppose that f (x(1), ... , x(n)) is a noncentralmultilinear polynomial over C and F, G are two nonzero generalized skew-derivations of R associated to the same automorphism of R. If F(u)u - G(u)F(u) = 0 for all u is an element of f (R), then one of the following holds: (1) there exist a, p is an element of Q(r) such that F(x) = ax and G(x) = pxp(-1) for all x is an element of R, with p(-1)a is an element of C; (2) there exist a, c, p is an element of Q(r) such that F(x) = ax + pxp(-1)c and G(x) = pxp(-1) for all x is an element of R, with f (R)(2) subset of C and p(-1)(a - c) is an element of C; (3) there exist a, p is an element of Q(r) such that F(x) = ax - pxp(-1)a and G(x) = - pxp(-1) for all x is an element of R, with f (R)(2) subset of C.
引用
收藏
页码:599 / 620
页数:22
相关论文
共 50 条
  • [41] Hypercentralizing generalized skew derivations on left ideals in prime rings
    V. De Filippis
    O. M. Di Vincenzo
    Monatshefte für Mathematik, 2014, 173 : 315 - 341
  • [42] Periodic and nilpotent values of generalized skew derivations on prime rings
    Andaloro, Milena
    Scudo, Giovanni
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025,
  • [43] Hypercentralizing generalized skew derivations on left ideals in prime rings
    De Filippis, V.
    Di Vincenzo, O. M.
    MONATSHEFTE FUR MATHEMATIK, 2014, 173 (03): : 315 - 341
  • [44] ON IDEALS WITH SKEW DERIVATIONS OF PRIME RINGS
    Rehman, Nadeem Ur
    Raza, Mohd Arif
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (02) : 717 - 724
  • [45] On skew derivations and antiautomorphisms in prime rings
    Alali, Amal S.
    Alnoghashi, Hafedh
    Nisar, Junaid
    Rehman, Nadeem
    Alqarni, Faez A.
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (02) : 173 - 179
  • [46] SKEW DERIVATIONS OF PRIME-RINGS
    KHARCHENKO, VK
    POPOV, AZ
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (11) : 3321 - 3345
  • [47] A NOTE ON SKEW DERIVATIONS IN PRIME RINGS
    De Filippis, Vincenzo
    Fosner, Ajda
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (04) : 885 - 898
  • [48] Central Values Involving Generalized Skew Derivations and Polynomials in Prime Rings
    B. Dhara
    G. S. Sandhu
    Siberian Mathematical Journal, 2022, 63 : 1231 - 1242
  • [49] Generalized skew-derivations acting on multilinear polynomial in prime rings
    Gupta, Pallavee
    De Filippis, Vincenzo
    Tiwari, S. K.
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (01) : 48 - 78
  • [50] Generalized skew-derivations as generalizations of Jordan homomorphisms in prime rings
    Dhara, Basudeb
    De Filippis, Vincenzo
    Sandhu, Gurninder S.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (11) : 5016 - 5032