Automated volumetric segmentation of retinal fluid on optical coherence tomography

被引:66
|
作者
Wang, Jie [1 ,2 ]
Zhang, Miao [1 ]
Pechauer, Alex D. [1 ]
Liu, Liang [1 ]
Hwang, Thomas S. [1 ]
Wilson, David J. [1 ]
Li, Dengwang [2 ]
Jia, Yali [1 ]
机构
[1] Oregon Hlth & Sci Univ, Casey Eye Inst, Portland, OR 97239 USA
[2] Shandong Normal Univ, Shandong Prov Key Lab Med Phys & Image Proc Techn, Jinan 250014, Peoples R China
来源
BIOMEDICAL OPTICS EXPRESS | 2016年 / 7卷 / 04期
关键词
DIABETIC MACULAR EDEMA; AMPLITUDE-DECORRELATION ANGIOGRAPHY; IMAGES; THICKNESS; ABNORMALITIES; RETINOPATHY; ALGORITHM; TEXTURE; MOTION;
D O I
10.1364/BOE.7.001577
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We propose a novel automated volumetric segmentation method to detect and quantify retinal fluid on optical coherence tomography (OCT). The fuzzy level set method was introduced for identifying the boundaries of fluid filled regions on B-scans (x and y-axes) and C-scans (z-axis). The boundaries identified from three types of scans were combined to generate a comprehensive volumetric segmentation of retinal fluid. Then, artefactual fluid regions were removed using morphological characteristics and by identifying vascular shadowing with OCT angiography obtained from the same scan. The accuracy of retinal fluid detection and quantification was evaluated on 10 eyes with diabetic macular edema. Automated segmentation had good agreement with manual segmentation qualitatively and quantitatively. The fluid map can be integrated with OCT angiogram for intuitive clinical evaluation. (C) 2016 Optical Society of America
引用
收藏
页码:1577 / 1589
页数:13
相关论文
共 50 条
  • [41] Automated Segmentation of Pathological Cavities in Optical Coherence Tomography Scans
    Pilch, Matthaeus
    Stieger, Knut
    Wenner, Yaroslava
    Preising, Markus N.
    Friedburg, Christoph
    Bexten, Erdmuthe Meyer Zu
    Lorenz, Birgit
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (06) : 4385 - 4393
  • [42] Automated Segmentation of Dental Calculus in Optical Coherence Tomography Images
    Lee, Chia-Yen
    Chuang, Ching-Cheng
    Chen, Guan-Jie
    Huang, Chih-Chia
    Lee, Shyh-Yuan
    Lin, Yu-Hsien
    SENSORS AND MATERIALS, 2018, 30 (11) : 2517 - 2529
  • [43] Automated retinal shadow compensation of optical coherence tomography images
    Fabritius, Tapio
    Makita, Shuichi
    Hong, Yongjoo
    Myllyla, Risto
    Yasuno, Yoshiaki
    JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (01)
  • [44] Automated Segmentation of Retinoblastoma from Optical Coherence Tomography Images
    Pol, Nirmal
    Pandya, Bhadra
    Craig, Joshua
    Walter, Jane
    Kahrs, Lueder
    Mallipatna, Ashwin
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [45] Automated segmentation of tissue structures in optical coherence tomography data
    Gasca, Fernando
    Ramrath, Lukas
    Huettmann, Gereon
    Schweikard, Achim
    JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (03)
  • [46] Automated measurements of retinal thickness with optical coherence tomography - Reply
    Ray, R
    Stinnett, SS
    Jaffe, GJ
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2005, 140 (02) : 351 - 351
  • [47] Multiclass Segmentation as Multitask Learning for Drusen Segmentation in Retinal Optical Coherence Tomography
    Asgari, Rhona
    Orlando, Jose Ignacio
    Waldstein, Sebastian
    Schlanitz, Ferdinand
    Baratsits, Magdalena
    Schmidt-Erfurth, Ursula
    Bogunovic, Hrvoje
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 : 192 - 200
  • [48] Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography
    Shalev, Ronny
    Nakamura, Daisuke
    Nishino, Setsu
    Rollins, Andrew M.
    Bezerra, Hiram G.
    Wilson, David L.
    Ray, Soumya
    AI MAGAZINE, 2017, 38 (01) : 61 - 72
  • [49] Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning
    Liu, Xiaoming
    Wang, Shaocheng
    Zhang, Ying
    Liu, Dong
    Hu, Wei
    NEUROCOMPUTING, 2021, 452 : 576 - 591
  • [50] ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks
    Roy, Abhijit Guha
    Conjeti, Sailesh
    Karri, Sri Phani Krishna
    Sheet, Debdoot
    Katouzian, Amin
    Wachinger, Christian
    Navab, Nassir
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (08): : 3627 - 3642