Pathways for mitigating thermal losses in solar photovoltaics

被引:61
|
作者
Vaillon, Rodolphe [1 ,2 ,3 ]
Dupre, Olivier [4 ]
Cal, Raul Bayoan [5 ]
Calaf, Marc [2 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, INSA Lyon,CETHIL UMR5008, F-69621 Villeurbanne, France
[2] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
[3] Univ Politecn Madrid, Inst Energia Solar, E-28040 Madrid, Spain
[4] EPFL, Inst Microengn IMT, Photovolta & Thin Film Elect Lab, Rue Maladiere 71b, CH-2002 Neuchatel, Switzerland
[5] Portland State Univ, Dept Mech & Mat Engn, Portland, OR 97207 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
OPERATING TEMPERATURE; PERFORMANCE; EMISSIVITY; MODULES;
D O I
10.1038/s41598-018-31257-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To improve the performance of solar photovoltaic devices one should mitigate three types of losses: optical, electrical and thermal. However, further reducing the optical and electrical losses in modern photovoltaic devices is becoming increasingly costly. Therefore, there is a rising interest in minimizing the thermal losses. These correspond to the reduction in electrical power output resultant of working at temperatures above 25 degrees C and the associated accelerated aging. Here, we quantify the impact of all possible strategies to mitigate thermal losses in the case of the mainstream crystalline silicon technology. Results indicate that ensuring a minimum level of conductive/convective cooling capabilities is essential. We show that sub-bandgap reflection and radiative cooling are strategies worth pursuing and recommend further field testing in real-time operating conditions. The general method we propose is suitable for every photovoltaic technology to guide the research focused on reducing thermal losses.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Solar photovoltaics: In it together
    Dean, Nicky
    [J]. NATURE ENERGY, 2016, 1
  • [42] STEP (Solar Thermal Electrochemical Production) of Energetic Molecules: A synergy of photovoltaics and solar thermal to form a new, higher efficiency solar energy process
    Licht, S.
    [J]. PHOTOVOLTAICS FOR THE 21ST CENTURY 6, 2011, 33 (17): : 169 - 182
  • [43] Mitigating Exciton Recombination Losses in Organic Solar Cells by Engineering Nonfullerene Molecular Crystallization Behavior
    Zhang, Huarui
    Ran, Guangliu
    Cui, Xinyue
    Liu, Yuqiang
    Yin, Zhe
    Li, Dawei
    Ma, Xueqing
    Liu, Wenlong
    Lu, Hao
    Liu, Rui
    Cai, Lei
    Zhang, Wenkai
    Guo, Siru
    Li, Hongxiang
    Yu, Jifa
    Lin, Yi
    Liu, Yahui
    Lu, Guanghao
    Ma, Zaifei
    Cheng, Pei
    Bo, Zhishan
    [J]. ADVANCED ENERGY MATERIALS, 2023, 13 (38)
  • [44] The viability of solar photovoltaics
    Jackson, T
    Oliver, M
    [J]. ENERGY POLICY, 2000, 28 (14) : 983 - 988
  • [45] Solar photovoltaics: In it together
    Nicky Dean
    [J]. Nature Energy, 1
  • [46] Solar photovoltaics business
    Standing, T
    [J]. OIL & GAS JOURNAL, 2000, 98 (32) : 10 - 12
  • [47] The market for solar photovoltaics
    Oliver, M
    Jackson, T
    [J]. ENERGY POLICY, 1999, 27 (07) : 371 - 385
  • [48] Solar energy: photovoltaics
    Velosa, Alfonso, III
    [J]. EDN, 2009, 54 (20) : 62 - +
  • [49] Sustainability pathways for perovskite photovoltaics
    Prince, Kevin J.
    Mirletz, Heather M.
    Gaulding, E. Ashley
    Wheeler, Lance M.
    Kerner, Ross A.
    Zheng, Xiaopeng
    Schelhas, Laura T.
    Tracy, Paul
    Wolden, Colin A.
    Berry, Joseph J.
    Ovaitt, Silvana
    Barnes, Teresa M.
    Luther, Joseph M.
    [J]. NATURE MATERIALS, 2024, : 22 - 33
  • [50] SOLAR COLLECTOR FIELD HALVES THERMAL-ENERGY LOSSES
    不详
    [J]. TEXTILE INDUSTRIES, 1984, 148 (02): : 64 - 65