Recent Advances and Perspectives of Air Stable Sulfide-Based Solid Electrolytes for All-Solid-State Lithium Batteries

被引:15
|
作者
Li, Ping [1 ]
Ma, Zhihui [1 ]
Shi, Jie [1 ]
Han, Kun [1 ,2 ]
Wan, Qi [3 ,4 ]
Liu, Yongchang [1 ]
Qu, Xuanhui [1 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, PR, Peoples R China
[2] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117573, Singapore
[3] Southwest Univ Sci & Technol, Sch Mat Sci & Engn, Mianyang 621010, Sichuan, Peoples R China
[4] Shanxi Beike Qiantong Energy Storage Sci & Techno, Gaoping 048400, Peoples R China
来源
CHEMICAL RECORD | 2022年 / 22卷 / 10期
基金
中国国家自然科学基金;
关键词
All-solid-state lithium batteries; Sulfide solid electrolytes; Air stability; IONIC CONDUCTOR; SUPERIONIC CONDUCTORS; THIO-LISICON; CHEMICAL-STABILITY; GLASS ELECTROLYTES; COMPOSITE ELECTROLYTES; SECONDARY BATTERIES; CRYSTAL-STRUCTURE; LI6PS5X X; METAL;
D O I
10.1002/tcr.202200086
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An all-solid-state battery enabled by the incombustible and highly Li-ion conductive sulfide solid-state electrolyte, is recognized to be a strong candidate for next-generation of lithium-ion batteries. Intensive research efforts have been devoted to developing the well-suited sulfide electrolytes with outstanding performances. Although several types of sulfide electrolytes have achieved superionic conductivities with excellent deformability, the air-sensitive behaviors of them are detrimental to the large-scale production. Considerable efforts are in progress to tackle this issue via various strategies in recent years. This review provides an overview of several classes of promising sulfide solid electrolytes. The principle and strategies for improving the resistance of these sulfide electrolytes against air are thoroughly discussed. We also point out the major challenges that all-solid-state batteries and different types of sulfide electrolytes face for practical applications.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries
    Tatsumisago, Masahiro
    Nagao, Motohiro
    Hayashi, Akitoshi
    JOURNAL OF ASIAN CERAMIC SOCIETIES, 2013, 1 (01): : 17 - 25
  • [22] Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes
    Xu, Ruochen
    Zhang, Shengzhao
    Wang, Xiuli
    Xia, Yan
    Xia, Xinhui
    Wu, Jianbo
    Gu, Changdong
    Tu, Jiangping
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (23) : 6007 - +
  • [23] Sulfide-based composite solid electrolyte films for all-solid-state batteries
    Li, Shenghao
    Yang, Zhihua
    Wang, Shu-Bo
    Ye, Mingqiang
    He, Hongcai
    Zhang, Xin
    Nan, Ce-Wen
    Wang, Shuo
    COMMUNICATIONS MATERIALS, 2024, 5 (01)
  • [24] Sulfide-based composite solid electrolyte films for all-solid-state batteries
    Shenghao Li
    Zhihua Yang
    Shu-Bo Wang
    Mingqiang Ye
    Hongcai He
    Xin Zhang
    Ce-Wen Nan
    Shuo Wang
    Communications Materials, 5
  • [25] Sulfide-Based Flexible Solid Electrolyte Enhancing Cycling Performance of All-Solid-State Lithium Batteries
    Hong, Seung-Bo
    Jang, Yoo-Rim
    Jung, Yun-Chae
    Cho, Woosuk
    Kim, Dong-Won
    ACS APPLIED ENERGY MATERIALS, 2024, : 5193 - 5201
  • [26] Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries
    Yu Li
    Dechao Zhang
    Xijun Xu
    Zhuosen Wang
    Zhengbo Liu
    Jiadong Shen
    Jun Liu
    Min Zhu
    Journal of Energy Chemistry, 2021, 60 (09) : 32 - 60
  • [27] Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries
    Cheng, Zhiwei
    Liu, Tong
    Zhao, Bin
    Shen, Fei
    Jin, Haiyun
    Han, Xiaogang
    ENERGY STORAGE MATERIALS, 2021, 34 : 388 - 416
  • [28] Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries
    Li, Yu
    Zhang, Dechao
    Xu, Xijun
    Wang, Zhuosen
    Liu, Zhengbo
    Shen, Jiadong
    Liu, Jun
    Zhu, Min
    JOURNAL OF ENERGY CHEMISTRY, 2021, 60 : 32 - 60
  • [29] Preparation of Lithium Sulfide-Based Cathode Materials and Application to All-Solid-State Batteries
    Matsuda A.
    Hikima K.
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2024, 71 (03): : 75 - 80
  • [30] Interface engineering of sulfide electrolytes for all-solid-state lithium batteries
    Xu, Ruochen
    Han, Fudong
    Ji, Xiao
    Fan, Xiulin
    Tu, Jiangping
    Wang, Chunsheng
    NANO ENERGY, 2018, 53 : 958 - 966