HCTNet: A Hybrid ConvNet-Transformer Network for Retinal Optical Coherence Tomography Image Classification

被引:13
|
作者
Ma, Zongqing [1 ,2 ]
Xie, Qiaoxue [1 ,2 ]
Xie, Pinxue [3 ]
Fan, Fan [1 ,2 ]
Gao, Xinxiao [3 ]
Zhu, Jiang [1 ,2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Key Lab, Minist Educ Optoelect Measurement Technol & Instr, Beijing 100192, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Beijing Lab Biomed Testing Technol & Instruments, Beijing 100192, Peoples R China
[3] Capital Med Univ, Beijing Anzhen Hosp, Beijing 100029, Peoples R China
来源
BIOSENSORS-BASEL | 2022年 / 12卷 / 07期
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
convolutional neural network; vision transformer; optical coherence tomography; image classification; DIABETIC MACULAR EDEMA; DEGENERATION; ATTENTION;
D O I
10.3390/bios12070542
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Automatic and accurate optical coherence tomography (OCT) image classification is of great significance to computer-assisted diagnosis of retinal disease. In this study, we propose a hybrid ConvNet-Transformer network (HCTNet) and verify the feasibility of a Transformer-based method for retinal OCT image classification. The HCTNet first utilizes a low-level feature extraction module based on the residual dense block to generate low-level features for facilitating the network training. Then, two parallel branches of the Transformer and the ConvNet are designed to exploit the global and local context of the OCT images. Finally, a feature fusion module based on an adaptive re-weighting mechanism is employed to combine the extracted global and local features for predicting the category of OCT images in the testing datasets. The HCTNet combines the advantage of the convolutional neural network in extracting local features and the advantage of the vision Transformer in establishing long-range dependencies. A verification on two public retinal OCT datasets shows that our HCTNet method achieves an overall accuracy of 91.56% and 86.18%, respectively, outperforming the pure ViT and several ConvNet-based classification methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A method for detection of retinal layers by optical coherence tomography image segmentation
    Bagci, Ahmet M.
    Ansari, Rashid
    Shahidi, Malmaz
    2007 IEEE/NIH LIFE SCIENCE SYSTEMS AND APPLICATIONS WORKSHOP, 2007, : 144 - +
  • [33] Retinal optical coherence tomography image enhancement via deep learning
    Halupka, Kerry J.
    Antony, Bhavna J.
    Lee, Matthew H.
    Lucy, Katie A.
    Rai, Ravneet S.
    Ishikawa, Hiroshi
    Wollstein, Gadi
    Schuman, Joel S.
    Garnavi, Rahil
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (12): : 6205 - 6221
  • [34] Optical Coherence Tomography and Optical Coherence Tomography Angiography in Pediatric Retinal Diseases
    Wang, Chung-Ting
    Chang, Yin-Hsi
    Tan, Gavin S. W.
    Lee, Shu Yen
    Chan, R. V. Paul
    Wu, Wei-Chi
    Tsai, Andrew S. H.
    DIAGNOSTICS, 2023, 13 (08)
  • [35] Classification of optical coherence tomography images using a capsule network
    Tsuji, Takumasa
    Hirose, Yuta
    Fujimori, Kohei
    Hirose, Takuya
    Oyama, Asuka
    Saikawa, Yusuke
    Mimura, Tatsuya
    Shiraishi, Kenshiro
    Kobayashi, Takenori
    Mizota, Atsushi
    Kotoku, Jun'ichi
    BMC OPHTHALMOLOGY, 2020, 20 (01)
  • [36] Classification of optical coherence tomography images using a capsule network
    Takumasa Tsuji
    Yuta Hirose
    Kohei Fujimori
    Takuya Hirose
    Asuka Oyama
    Yusuke Saikawa
    Tatsuya Mimura
    Kenshiro Shiraishi
    Takenori Kobayashi
    Atsushi Mizota
    Jun’ichi Kotoku
    BMC Ophthalmology, 20
  • [37] Optical coherence tomography in retinal diseases
    Schaudig, U
    OPHTHALMOLOGE, 2001, 98 (01): : 26 - 34
  • [38] Multi-Fundus Diseases Classification Using Retinal Optical Coherence Tomography Images with Swin Transformer V2
    Li, Zhenwei
    Han, Yanqi
    Yang, Xiaoli
    JOURNAL OF IMAGING, 2023, 9 (10)
  • [39] Optical coherence tomography image for automatic classification of diabetic macular edema
    Wang, Ping
    Li, Jia-Li
    Ding, Hao
    OPTICA APPLICATA, 2020, 50 (04) : 567 - 577
  • [40] A Deep Learning Model for Cervical Optical Coherence Tomography Image Classification
    Zuo, Xiaohu
    Liu, Jianfeng
    Hu, Ming
    He, Yong
    Hong, Li
    DIAGNOSTICS, 2024, 14 (18)