Basin entropy in Boolean network ensembles

被引:70
|
作者
Krawitz, Peter [1 ]
Shmulevich, Ilya
机构
[1] Inst Syst Biol, Seattle, WA 98103 USA
[2] Univ Munich, Fak Phys, D-80799 Munich, Germany
关键词
Dynamical systems;
D O I
10.1103/PhysRevLett.98.158701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The information processing capacity of a complex dynamical system is reflected in the partitioning of its state space into disjoint basins of attraction, with state trajectories in each basin flowing towards their corresponding attractor. We introduce a novel network parameter, the basin entropy, as a measure of the complexity of information that such a system is capable of storing. By studying ensembles of random Boolean networks, we find that the basin entropy scales with system size only in critical regimes, suggesting that the informationally optimal partition of the state space is achieved when the system is operating at the critical boundary between the ordered and disordered phases.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] On Boolean control networks with maximal topological entropy
    Laschov, Dmitriy
    Margaliot, Michael
    AUTOMATICA, 2014, 50 (11) : 2924 - 2928
  • [32] Entropy of complex relevant components of Boolean networks
    Krawitz, Peter
    Shmulevich, Ilya
    PHYSICAL REVIEW E, 2007, 76 (03):
  • [33] Multivariate interpolation and information entropy for optimizing raingauge network in the Mekong River Basin
    Li, Shuangshuang
    Heng, Sokchhay
    Siev, Sokly
    Yoshimura, Chihiro
    Saavedra, Oliver
    Ly, Sarann
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2019, 64 (12): : 1439 - 1452
  • [34] Unpredictability and basin entropy
    Daza, Alvar
    Wagemakers, Alexandre
    Sanjuan, Miguel A. F.
    EPL, 2023, 141 (04)
  • [35] Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells
    Schwab, Julian D.
    Ikonomi, Nensi
    Werle, Silke D.
    Weidner, Felix M.
    Geiger, Hartmut
    Kestler, Hans A.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 5321 - 5332
  • [36] Structural Trends in Network Ensembles
    Brandes, Ulrik
    Lerner, Juergen
    Nagel, Uwe
    Nick, Bobo
    COMPLEX NETWORKS, 2009, 207 : 83 - 97
  • [37] A survey of neural network ensembles
    Zhao, Y
    Gao, J
    Yang, XZ
    PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 438 - 442
  • [38] Multistage neural network ensembles
    Yang, S
    Browne, A
    Picton, PD
    MULTIPLE CLASSIFIER SYSTEMS, 2002, 2364 : 91 - 97
  • [39] Algorithm to identify the optimal perturbation based on the net basin-of-state of perturbed states in Boolean network
    Shen, Liangzhong
    Zan, Xiangzhen
    Liu, Wenbin
    IET SYSTEMS BIOLOGY, 2018, 12 (04) : 148 - 153
  • [40] Federated Bayesian Network Ensembles
    van Daalen, Florian
    Ippel, Lianne
    Dekker, Andre
    Bermejo, Inigo
    2023 EIGHTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING, FMEC, 2023, : 22 - 33