Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery

被引:39
|
作者
Han, Dong [1 ,2 ]
Liu, Shuaibing [1 ]
Du, Ying [1 ,3 ]
Xie, Xinrui [1 ]
Fan, Lingling [1 ]
Lei, Lei [1 ]
Li, Zhenhong [4 ]
Yang, Hao [1 ]
Yang, Guijun [1 ]
机构
[1] Minist Agr China, Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
[2] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[3] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[4] Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
remote sensing; Sentinel-1; Sentinel-2; winter wheat; crop water content; SYNTHETIC-APERTURE RADAR; SOIL-MOISTURE; STRESS INDEX; VEGETATION; SATELLITE; BIOMASS; NDVI; REFLECTANCE; RETRIEVAL; MODIS;
D O I
10.3390/s19184013
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This study aims to efficiently estimate the crop water content of winter wheat using high spatial and temporal resolution satellite-based imagery. Synthetic-aperture radar (SAR) data collected by the Sentinel-1 satellite and optical imagery from the Sentinel-2 satellite was used to create inversion models for winter wheat crop water content, respectively. In the Sentinel-1 approach, several enhanced radar indices were constructed by Sentinel-1 backscatter coefficient of imagery, and selected the one that was most sensitive to soil water content as the input parameter of a water cloud model. Finally, a water content inversion model for winter wheat crop was established. In the Sentinel-2 approach, the gray relational analysis was used for several optical vegetation indices constructed by Sentinel-2 spectral feature of imagery, and three vegetation indices were selected for multiple linear regression modeling to retrieve the wheat crop water content. 58 ground samples were utilized in modeling and verification. The water content inversion model based on Sentinel-2 optical images exhibited higher verification accuracy (R = 0.632, RMSE = 0.021 and nRMSE = 19.65%) than the inversion model based on Sentinel-1 SAR (R = 0.433, RMSE = 0.026 and nRMSE = 21.24%). This study provides a reference for estimating the water content of wheat crops using data from the Sentinel series of satellites.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] CROP HEIGHT ESTIMATION OF WHEAT USING SENTINEL-1 SATELLITE IMAGERY: PRELIMINARY RESULTS
    Narin, O. G.
    Bayik, C.
    Sekertekin, A.
    Madenoglu, S.
    Pinar, M. O.
    Abdikan, S.
    Sanli, F. Balik
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 267 - 273
  • [42] Optimizing Wheat Yield Prediction Integrating Data from Sentinel-1 and Sentinel-2 with CatBoost Algorithm
    Uribeetxebarria, Asier
    Castellon, Ander
    Aizpurua, Ana
    REMOTE SENSING, 2023, 15 (06)
  • [43] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [44] Canonical Analysis of Sentinel-1 Radar and Sentinel-2 Optical Data
    Nielsen, Allan A.
    Larsen, Rasmus
    IMAGE ANALYSIS, SCIA 2017, PT II, 2017, 10270 : 147 - 158
  • [45] Effectiveness of Sentinel-1 and Sentinel-2 for flood detection assessment in Europe
    Tarpanelli, Angelica
    Mondini, Alessandro C.
    Camici, Stefania
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2022, 22 (08) : 2473 - 2489
  • [46] Application of Sentinel-1 and Sentinel-2 data to conduct reconnaissance analyses
    Jenerowicz, Agnieszka
    Orych, Agata
    Siok, Katarzyna
    Smiarowski, Michal
    ELECTRO-OPTICAL REMOTE SENSING XIII, 2019, 11160
  • [47] SENTINEL-1 & SENTINEL-2 FOR SOIL MOISTURE RETRIEVAL AT FIELD SCALE
    Mattia, F.
    Balenzano, A.
    Satalino, G.
    Lovergine, F.
    Peng, J.
    Wegmuller, U.
    Cartus, O.
    Davidson, M. W. J.
    Kim, S.
    Johnson, J.
    Walker, J.
    Wu, X.
    Pauwels, V. R. N.
    McNairn, H.
    Caldwell, T.
    Cosh, M.
    Jackson, T.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6143 - 6146
  • [48] Mediterranean Shrublands Biomass Estimation Using Sentinel-1 and Sentinel-2
    Chang, Jisung
    Shoshany, Maxim
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5300 - 5303
  • [49] ESTIMATION OF SOIL MOISTURE USING SENTINEL-1 AND SENTINEL-2 IMAGES
    Sarteshnizi, R. Esmaeili
    Vayghan, S. Sahebi
    Jazirian, I.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 137 - 142
  • [50] SENTINEL-1 AND SENTINEL-2 DATA FUSION FOR URBAN CHANGE DETECTION
    Benedetti, Alessia
    Picchiani, Matteo
    Del Frate, Fabio
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1962 - 1965