Free energy of grain boundaries from atomistic computer simulation

被引:2
|
作者
Ganguly, Saswati [1 ]
Horbach, Juergen [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Theoret Phys Weiche Mat 2, Univ Str 1, D-40225 Dusseldorf, Germany
关键词
CENTERED-CUBIC METALS; FACETING-DEFACETING TRANSITION; 5 MACROSCOPIC PARAMETERS; FCC METALS; MOLECULAR-DYNAMICS; PHASE-TRANSITIONS; MONTE-CARLO; SOLIDS; MOBILITY; TRANSMISSION;
D O I
10.1103/PhysRevE.98.031301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A thermodynamic integration (TI) scheme is presented that allows us to compute the free energy of grain boundaries (GBs) in crystals from an atomistic computer simulation. Unlike previous approaches, the method can be applied at arbitrary temperatures and allows for a systematic extrapolation to the thermodynamic limit. It is applied to a Sigma 11 GB in a face-centered-cubic Lennard-Jones crystal. At a constant density, the GB free energy shows a nonmonotonic temperature dependence with a maximum at about half the melting temperature, and the GB changes from a rigid to a rough interface with distinct finite-size scaling above this temperature.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] ATOMISTIC COMPUTER-SIMULATION OF THE DYNAMICS AND THERMODYNAMICS OF GRAIN-BOUNDARIES
    HARRISON, RJ
    BISHOP, GH
    KWOK, T
    YIP, S
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (03): : 274 - 274
  • [2] Atomistic simulation of grain boundaries in alumina
    Exner, M
    Finnis, MW
    [J]. INTERGRANULAR AND INTERPHASE BOUNDARIES IN MATERIALS, PT 1, 1996, 207- : 225 - 228
  • [3] ATOMISTIC COMPUTER STUDIES ON GRAIN-BOUNDARIES
    BISHOP, GH
    HARRISON, RJ
    KWOK, T
    YIP, S
    [J]. JOURNAL OF METALS, 1980, 32 (08): : 44 - 44
  • [4] Atomistic simulation of dislocation emission in nanosized grain boundaries
    Derlet, PM
    Van Swygenhoven, H
    Hasnaoui, A
    [J]. PHILOSOPHICAL MAGAZINE, 2003, 83 (31-34) : 3569 - 3575
  • [5] A computer simulation of strain energy from rotation to promote protonic conduction across grain boundaries
    Abubakar, M. A.
    Getahun, A. D.
    Kennefick, C. M.
    [J]. PHYSICA B-CONDENSED MATTER, 2010, 405 (05) : 1437 - 1446
  • [6] Structure, energy, and structural transformations of graphene grain boundaries from atomistic simulations
    Liu, Te-Huan
    Gajewski, Grzegorz
    Pao, Chun-Wei
    Chang, Chien-Cheng
    [J]. CARBON, 2011, 49 (07) : 2306 - 2317
  • [7] Atomistic simulation of [001] symmetrical tilt grain boundaries in NiAl
    Mishin, Y
    Farkas, D
    [J]. PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1998, 78 (01): : 29 - 56
  • [8] Atomistic simulation study of dislocations and grain boundaries in nanoscale semiconductors
    Masuda-Jindo, K
    Kikuchi, R
    Obata, S
    Menon, M
    [J]. POLYCRYSTALLINE SEMICONDUCTORS VII, PROCEEDINGS, 2003, 93 : 375 - 380
  • [9] Atomistic simulation study of grain boundaries and dislocations in nanoscale semiconductors
    Masuda-Jindo, K
    Menon, M
    Kikuchi, R
    [J]. POLYCRYSTALLINE SEMICONDUCTORS IV MATERIALS, TECHNOLOGIES AND LARGE AREA ELECTRONICS, 2001, 80-81 : 231 - 236
  • [10] Atomistic simulation of hydrogen diffusion at tilt grain boundaries in vanadium
    Jae-Hyeok Shim
    Won-Seok Ko
    Jin-Yoo Suh
    Young-Su Lee
    Byeong-Joo Lee
    [J]. Metals and Materials International, 2013, 19 : 1221 - 1225