Dynamics of nematic liquid crystal flows: The quasilinear approach

被引:38
|
作者
Hieber, Matthias [1 ,2 ]
Nesensohn, Manuel [1 ]
Pruess, Jan [3 ]
Schade, Katharina [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgarten Str 7, D-64289 Darmstadt, Germany
[2] Univ Pittsburgh, 607 Benedum Engn Hall, Pittsburgh, PA 15261 USA
[3] Univ Halle Wittenberg, Inst Math, Theodor Lieser Str 5, D-06120 Halle, Germany
关键词
Nematic liquid crystals; Quasilinear parabolic evolution equations; Regularity; Global solutions; Convergence to equilibria; EQUATIONS;
D O I
10.1016/j.anihpc.2014.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the (simplified) Leslie-Ericksen model for the flow of nematic liquid crystals in a bounded domain Omega subset of R-n for n > 1. This article develops a complete dynamic theory for these equations, analyzing the system as a quasilinear parabolic evolution equation in an L-p - L-q-setting. First, the existence of a unique local strong solution is proved. This solution extends to a global strong solution, provided the initial data are close to an equilibrium or the solution is eventually bounded in the natural norm of the underlying state space. In this case the solution converges exponentially to an equilibrium. Moreover, the solution is shown to be real analytic, jointly in time and space. (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:397 / 408
页数:12
相关论文
共 50 条
  • [21] Global strong solutions for compressible nematic liquid crystal flows
    Sun, Yimin
    Zhong, Xin
    Zhou, Ling
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 76
  • [22] Thermodynamical Consistent Modeling and Analysis of Nematic Liquid Crystal Flows
    Hieber, Matthias
    Pruess, Jan
    MATHEMATICAL FLUID DYNAMICS, PRESENT AND FUTURE, 2016, 183 : 433 - 459
  • [23] Blow Up Criteria for the Incompressible Nematic Liquid Crystal Flows
    Liu, Qiao
    Wei, Yemei
    ACTA APPLICANDAE MATHEMATICAE, 2017, 147 (01) : 63 - 80
  • [24] Two new regularity criteria for nematic liquid crystal flows
    Wei, Ruiying
    Li, Yin
    Yao, Zheng-an
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 636 - 650
  • [25] LPS’S CRITERION FOR INCOMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS
    陈卿
    谭忠
    吴国春
    Acta Mathematica Scientia, 2014, (04) : 1072 - 1080
  • [26] Blow Up Criteria for the Incompressible Nematic Liquid Crystal Flows
    Qiao Liu
    Yemei Wei
    Acta Applicandae Mathematicae, 2017, 147 : 63 - 80
  • [27] FREEDERICKSZ TRANSITION IN NEMATIC LIQUID CRYSTAL FLOWS IN DIMENSION TWO
    Chen, Yuan
    Kim, Soojung
    Yu, Yong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 4838 - 4860
  • [28] ON ENERGETIC VARIATIONAL APPROACHES IN MODELING THE NEMATIC LIQUID CRYSTAL FLOWS
    Sun, Huan
    Liu, Chun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (1-2) : 455 - 475
  • [29] Nonequilibrium Dynamics of a Magnetic Nanocapsule in a Nematic Liquid Crystal
    Armendariz, Jose
    Hijar, Humberto
    MATERIALS, 2021, 14 (11)
  • [30] Photobleaching and reorientational dynamics of dyes in a nematic liquid crystal
    Nöllmann, M
    Shalóm, D
    Etchegoin, P
    Sereni, J
    PHYSICAL REVIEW E, 1999, 59 (02) : 1850 - 1859