A simple numerical procedure for estimating nonlinear uncertainty propagation

被引:9
|
作者
Luck, R
Stevens, JW
机构
[1] Univ Colorado, Dept Mech & Aerosp Engn, Colorado Springs, CO 80933 USA
[2] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
关键词
uncertainty; nonlinear;
D O I
10.1016/S0019-0578(07)60163-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurately determining the effect of the propagation of uncertainty in nonlinear applications can be awkward and difficult. The Monte Carlo approach requires statistically significant numbers of function evaluations (typically 10(5) or more) and analytical methods are intractable for all but the simplest cases. This paper derives and demonstrates a method to estimate the propagation of uncertainty in nonlinear cases by representing the function in a piecewise fashion with straight line segments. The probability density function of the result can be calculated from the transformation of the line segments. The mean and confidence intervals of the result can then be calculated from the probability density function. For the special case of a normal distribution in the independent variable, calculation of the mean and confidence intervals requires evaluation of only the error function (erf). A simple example is presented to demonstrate the technique. Variations on the basic approach are presented and discussed. (C) 2004 ISA-The Instrumentation, Systems, and Automation Society.
引用
收藏
页码:491 / 497
页数:7
相关论文
共 50 条
  • [31] Estimating the uncertainty of a primary acoustic standard by numerical methods
    Chalyi, VP
    Parakuda, VV
    Kosterov, AA
    Gaiduk, NV
    Faida, AM
    MEASUREMENT TECHNIQUES, 2005, 48 (05) : 438 - 444
  • [32] Multidimensional transitional dynamics: A simple numerical procedure
    Trimborn, Two
    Koch, Karl-Josef
    Steger, Thomas M.
    MACROECONOMIC DYNAMICS, 2008, 12 (03) : 301 - 319
  • [33] Estimating the Uncertainty of a Primary Acoustic Standard by Numerical Methods
    V. P. Chalyi
    V. V. Parakuda
    A. A. Kosterov
    N. V. Gaiduk
    A. M. Faida
    Measurement Techniques, 2005, 48 : 438 - 444
  • [34] Impact of Microwave Measurement Uncertainty on the Nonlinear Embedding Procedure
    Bosi, Gianni
    Raffo, Antonio
    Avolio, Gustavo
    Schreurs, Dominique
    Humphreys, David A.
    2016 87TH ARFTG MICROWAVE MEASUREMENT CONFERENCE (ARFTG), 2016,
  • [35] UNCERTAINTY PROPAGATION IN NUMERICAL MODELING OF DIRECT CHILL CASTING
    Fezi, Kyle
    Krane, Matthew J. M.
    LIGHT METALS 2016, 2016, : 667 - 672
  • [36] Multidirectional Gaussian Mixture Models for Nonlinear Uncertainty Propagation
    Vittaldev, V.
    Russell, R. P.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2016, 111 (01): : 83 - 117
  • [37] Reduced Nonlinear Model for Orbit Uncertainty Propagation and Estimation
    Roa, Javier
    Park, Ryan S.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2021, 44 (09) : 1578 - 1592
  • [38] Uncertainty propagation for nonlinear dynamics: A polynomial optimization approach
    Covella, Francesca
    Fantuzzi, Giovanni
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 4142 - 4147
  • [39] Near field and propagation constant of nonlinear single-mode optical fibers: a simple numerical technique
    Aly, Moustafa H.
    Sami, M.
    Abouelwafa, A.
    Wahba, Adel M.
    Modelling, Measurement and Control A, 1996, 66 (02): : 41 - 50
  • [40] A simple method for estimating dose uncertainty in ESR/alanine dosimetry
    Bergstrand, ES
    Hole, EO
    Sagstuen, E
    APPLIED RADIATION AND ISOTOPES, 1998, 49 (07) : 845 - 854