Discrete Hirota's equation in quantum integrable models

被引:32
|
作者
Zabrodin, A
机构
[1] Joint Inst Chem Phys, Moscow 117334, Russia
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 1997年 / 11卷 / 26-27期
关键词
D O I
10.1142/S0217979297001520
中图分类号
O59 [应用物理学];
学科分类号
摘要
The recent progress in revealing classical integrable structures in quantum models solved by Bethe ansatz is reviewed. Fusion relations for eigenvalues of quantum transfer matrices can be written in the form of classical Hirota's bilinear difference equation. This equation is also known as the completely discretized version of the 2D Toda lattice. We explain how one obtains the specific quantum results by solving the classical equation. The auxiliary linear problem for the Hirota equation is shown to generalize Baxter's T-Q relation.
引用
收藏
页码:3125 / 3158
页数:34
相关论文
共 50 条
  • [11] Hirota equation and the quantum plane
    Doliwa, Adam
    ALGEBRAIC AND GEOMETRIC ASPECTS OF INTEGRABLE SYSTEMS AND RANDOM MATRICES, 2013, 593 : 205 - +
  • [12] SOLITON SOLUTION FOR DISCRETE HIROTA EQUATION
    NARITA, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (10) : 3528 - 3530
  • [13] Nondegenerate solitons in the integrable fractional coupled Hirota equation
    An, Ling
    Ling, Liming
    Zhang, Xiaoen
    PHYSICS LETTERS A, 2023, 460
  • [14] Degenerate solutions for the spatial discrete Hirota equation
    Li, Meng
    Li, Maohua
    He, Jingsong
    NONLINEAR DYNAMICS, 2020, 102 (03) : 1825 - 1836
  • [15] Integrable semi-discretizations of the AKNS equation and the Hirota-Satsuma equation
    Hu, XB
    Tam, HW
    NONLINEAR EVOLUTION EQUATIONS AND DYNAMICAL SYSTEMS, 2003, : 49 - 60
  • [16] Degenerate solutions for the spatial discrete Hirota equation
    Meng Li
    Maohua Li
    Jingsong He
    Nonlinear Dynamics, 2020, 102 : 1825 - 1836
  • [17] ON DISCRETE MODELS OF THE QUANTUM BOLTZMANN-EQUATION
    VEDENYAPIN, VV
    MINGALEV, IV
    MINGALEV, OV
    RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 80 (02) : 271 - 285
  • [18] Darboux-integrable Reductions of the Hirota–Miwa Type Discrete Equations
    A. R. Khakimova
    Lobachevskii Journal of Mathematics, 2024, 45 (6) : 2717 - 2728
  • [19] Discrete Hirota equation: discrete Darboux transformation and new discrete soliton solutions
    Rui Guo
    Xiao-Juan Zhao
    Nonlinear Dynamics, 2016, 84 : 1901 - 1907
  • [20] Quantum integrable models on 1+1 discrete space time
    Faddeev, L
    Volkov, A
    QUANTUM FIELDS AND QUANTUM SPACE TIME, 1997, 364 : 73 - 91