共 50 条
Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells
被引:74
|作者:
Cerqueira, Brenda Brenner S.
[1
]
Lasham, Annette
[2
]
Shelling, Andrew N.
[3
]
Al-Kassas, Raida
[1
]
机构:
[1] Univ Auckland, Fac Med & Hlth Sci, Sch Pharm, Private Bag 92019, Auckland, New Zealand
[2] Univ Auckland, Dept Mol Med & Pathol, Fac Med & Hlth Sci, Auckland, New Zealand
[3] Univ Auckland, Dept Obstet & Gynaecol, Fac Med & Hlth Sci, Auckland, New Zealand
关键词:
PLGA nanoparticles;
Hyaluronic acid;
Paclitaxel;
Functionalized nanoparticles;
Degradation studies;
Cytotoxicity;
IN-VIVO;
SYSTEMS;
D O I:
10.1016/j.msec.2017.03.121
中图分类号:
TB3 [工程材料学];
R318.08 [生物材料学];
学科分类号:
0805 ;
080501 ;
080502 ;
摘要:
This study aimed at development of poly (lactic-co-glycolic acid) (PLGA) nanoparticles embedded with paclitaxel and coated with hyaluronic acid (HA-PTX-PLGA) to actively target the drug to a triple negative breast cancer cells. Nanoparticles were successfully fabricated using a modified oil-in-water emulsion method. The effect of various formulations parameters on the physicochemical properties of the nanoparticles was investigated. SEM imaging confirmed the spherical shape and nano-scale size of the nanoparticles. A sustained drug release profile was obtained and enhanced PTX cytotoxicity was observed when MDA-MB-231 cells were incubated with the HA-PTX-PLGA formulation compared to cells incubated with the non-HA coated nanoparticles. Moreover, HA-PLGA nanoparticles exhibited improved cellular uptake, based on a possible receptor mediated endocytosis due to interaction of HA with CD44 receptors when compared to non-coated PLGA nanoparticles. The non haemolytic potential of the nanoparticles indicated the suitability of the developed formulation for intravenous administration. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:593 / 600
页数:8
相关论文