Matrix polynomials with specified eigenvalues

被引:4
|
作者
Karow, Michael [1 ]
Mengi, Emre [2 ]
机构
[1] TU Berlin, Dept Math, D-10623 Berlin, Germany
[2] Koc Univ, Dept Math, TR-34450 Istanbul, Turkey
关键词
Matrix polynomial; Linearization; Singular values; Sylvester equation; Eigenvalue perturbation theory; MULTIPLE-EIGENVALUES; CRITICAL-POINTS; PSEUDOSPECTRA; DISTANCE; FORMULA;
D O I
10.1016/j.laa.2014.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work concerns the distance in the 2-norm from a given matrix polynomial to a nearest polynomial with a specified number of its eigenvalues at specified locations in the complex plane. Initially, we consider perturbations of the constant coefficient matrix only. A singular value optimization characterization is derived for the associated distance. We also consider the distance in the general setting, when all of the coefficient matrices are perturbed. In this general setting, we obtain a lower bound in terms of another singular value optimization problem. The singular value optimization problems derived facilitate the numerical computation of the distances. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:457 / 482
页数:26
相关论文
共 50 条
  • [21] TROPICAL ROOTS AS APPROXIMATIONS TO EIGENVALUES OF MATRIX POLYNOMIALS
    Noferini, Vanni
    Sharify, Meisam
    Tisseur, Francoise
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (01) : 138 - 157
  • [22] Bounds for the Eigenvalues of Matrix Polynomials with Commuting Coefficients
    Bani-Domi, Watheq
    Kittaneh, Fuad
    Mustafa, Rawan
    RESULTS IN MATHEMATICS, 2023, 78 (03)
  • [23] Location of Right Eigenvalues of Quaternionic Matrix Polynomials
    Istkhar Ali
    Ninoslav Truhar
    Advances in Applied Clifford Algebras, 2019, 29
  • [24] Bounds for the Eigenvalues of Matrix Polynomials with Commuting Coefficients
    Watheq Bani-Domi
    Fuad Kittaneh
    Rawan Mustafa
    Results in Mathematics, 2023, 78
  • [25] GERSHGORIN TYPE SETS FOR EIGENVALUES OF MATRIX POLYNOMIALS
    Michailidou, Christina
    Psarrakos, Panayiotis
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 652 - 674
  • [26] Location of Right Eigenvalues of Quaternionic Matrix Polynomials
    Ali, Istkhar
    Truhar, Ninoslav
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (04)
  • [27] A NOTE ON CONSTRUCTING A SYMMETRICAL MATRIX WITH SPECIFIED DIAGONAL ENTRIES AND EIGENVALUES
    ZHA, HY
    ZHANG, ZY
    BIT, 1995, 35 (03): : 448 - 452
  • [28] On the distance from a matrix polynomial to matrix polynomials with some prescribed eigenvalues
    Kokabifar, E.
    Psarrakos, P. J.
    Loghmani, G. B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 158 - 185
  • [29] Pseudospectra, critical points and multiple eigenvalues of matrix polynomials
    Ahmad, Sk. Safique
    Alam, Rafikul
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1171 - 1195
  • [30] Non-archimedean valuations of eigenvalues of matrix polynomials
    Akian, Marianne
    Bapat, Ravindra
    Gaubert, Stephan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 498 : 592 - 627