Algorithms and basic asymptotics for generalized numerical semigroups in N

被引:0
|
作者
Failla, Gioia [1 ]
Peterson, Chris [2 ]
Utano, Rosanna [3 ]
机构
[1] Univ Mediterranea Reggio Calabria, DIIES, Via Graziella, Reggio Di Calabria, Italy
[2] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[3] Univ Messina, Dipartimento Matemat & Informat, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
关键词
Numerical semigroup; Monoid; Frobenius number; FINITELY GENERATED SUBMONOIDS; GENUS; NUMBER;
D O I
10.1007/s00233-015-9690-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let denote the monoid of natural numbers. A numerical semigroup is a cofinite submonoid . For the purposes of this paper, a generalized numerical semigroup (GNS) is a cofinite submonoid . The cardinality of is called the genus. We describe a family of algorithms, parameterized by (relaxed) monomial orders, that can be used to generate trees of semigroups with each GNS appearing exactly once. Let denote the number of generalized numerical semigroups of genus . We compute for small values of and provide coarse asymptotic bounds on for large values of . For a fixed , we show that is a polynomial function of degree . We close with several open problems/conjectures related to the asymptotic growth of and with suggestions for further avenues of research.
引用
收藏
页码:460 / 473
页数:14
相关论文
共 50 条
  • [1] Algorithms for generalized numerical semigroups
    Cisto, Carmelo
    Delgado, Manuel
    Garcia-Sanchez, Pedro A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (05)
  • [2] Generalized perfect numerical semigroups
    Zmmo, Mohammad
    Tutas, Nesrin
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (01) : 150 - 162
  • [3] On the asymptotics of n-times integrated semigroups
    Gale, Jose E.
    Martinez, Maria M.
    Miana, Pedro J.
    COMPLEX ANALYSIS AND SPECTRAL THEORY, 2020, 743 : 263 - 272
  • [4] The Corner Element of Generalized Numerical Semigroups
    Bernardini, Matheus
    Tenorio, Wanderson
    Tizziotti, Guilherme
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [5] On some classes of generalized numerical semigroups
    Cisto, Carmelo
    Navarra, Francesco
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2025, 33 (01):
  • [6] The Corner Element of Generalized Numerical Semigroups
    Matheus Bernardini
    Wanderson Tenório
    Guilherme Tizziotti
    Results in Mathematics, 2022, 77
  • [7] On almost-symmetry in generalized numerical semigroups
    Cisto, Carmelo
    Tenorio, Wanderson
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (06) : 2337 - 2355
  • [8] Numerical semigroups generated by generalized arithmetic sequences
    Matthews, GL
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (09) : 3459 - 3469
  • [9] Frobenius allowable gaps of Generalized Numerical Semigroups
    Singhal, Deepesh
    Lin, Yuxin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04): : 1 - 21
  • [10] The Frobenius Problem for Generalized Repunit Numerical Semigroups
    Branco, Manuel B.
    Colaco, Isabel
    Ojeda, Ignacio
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)