Frobenius allowable gaps of Generalized Numerical Semigroups

被引:4
|
作者
Singhal, Deepesh [1 ]
Lin, Yuxin [2 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] CALTECH, Dept Math, Pasadena, CA USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2022年 / 29卷 / 04期
关键词
D O I
10.37236/10748
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized numerical semigroup is a submonoid S of Nd for which the complement Nd \ S is finite. The points in the complement Nd \ S are called gaps. A gap F is considered Frobenius allowable if there is some relaxed monomial ordering on Nd with respect to which F is the largest gap. We characterize the Frobenius allowable gaps of a generalized numerical semigroup. A generalized numerical semigroup that has only one maximal gap under the natural partial ordering of Nd is called a Frobenius generalized numerical semigroup. We show that Frobenius generalized numerical semigroups are precisely those whose Frobenius gap does not depend on the relaxed monomial ordering. We estimate the number of Frobenius generalized numerical semigroup with a given Frobenius gap F = (F(1), ... , F(d)) is an element of Nd and show that it is close to root 3(F(1)+/- 1)center dot center dot center dot(F(d)+/- 1) for large d. We define notions of quasiirreducibility and quasi-symmetry for generalized numerical semigroups. While in the case of d = 1 these notions coincide with irreducibility and symmetry, they are distinct in higher dimensions.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] The Frobenius Problem for Generalized Repunit Numerical Semigroups
    Branco, Manuel B.
    Colaco, Isabel
    Ojeda, Ignacio
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [2] The Frobenius Problem for Generalized Repunit Numerical Semigroups
    Manuel B. Branco
    Isabel Colaço
    Ignacio Ojeda
    Mediterranean Journal of Mathematics, 2023, 20
  • [3] Irreducible generalized numerical semigroups and uniqueness of the Frobenius element
    Carmelo Cisto
    Gioia Failla
    Chris Peterson
    Rosanna Utano
    Semigroup Forum, 2019, 99 : 481 - 495
  • [4] Irreducible generalized numerical semigroups and uniqueness of the Frobenius element
    Cisto, Carmelo
    Failla, Gioia
    Peterson, Chris
    Utano, Rosanna
    SEMIGROUP FORUM, 2019, 99 (02) : 481 - 495
  • [5] The Frobenius problem for numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    JOURNAL OF NUMBER THEORY, 2011, 131 (12) : 2310 - 2319
  • [6] ON THE FROBENIUS PROBLEM OF NUMERICAL SEMIGROUPS
    Leher, Eli
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 639 - 649
  • [7] Frobenius Numbers of Generalized Fibonacci Semigroups
    Matthews, Gretchen L.
    COMBINATORIAL NUMBER THEORY, 2009, : 117 - 124
  • [8] THE FROBENIUS VARIETY OF THE SATURATED NUMERICAL SEMIGROUPS
    Rosales, J. C.
    Vasco, P.
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (02): : 357 - 365
  • [9] Frobenius restricted varieties in numerical semigroups
    Robles-Perez, Aureliano M.
    Carlos Rosales, Jose
    SEMIGROUP FORUM, 2018, 97 (03) : 478 - 492
  • [10] The Frobenius problem for repunit numerical semigroups
    J. C. Rosales
    M. B. Branco
    D. Torrão
    The Ramanujan Journal, 2016, 40 : 323 - 334