Frobenius allowable gaps of Generalized Numerical Semigroups

被引:4
|
作者
Singhal, Deepesh [1 ]
Lin, Yuxin [2 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] CALTECH, Dept Math, Pasadena, CA USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2022年 / 29卷 / 04期
关键词
D O I
10.37236/10748
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized numerical semigroup is a submonoid S of Nd for which the complement Nd \ S is finite. The points in the complement Nd \ S are called gaps. A gap F is considered Frobenius allowable if there is some relaxed monomial ordering on Nd with respect to which F is the largest gap. We characterize the Frobenius allowable gaps of a generalized numerical semigroup. A generalized numerical semigroup that has only one maximal gap under the natural partial ordering of Nd is called a Frobenius generalized numerical semigroup. We show that Frobenius generalized numerical semigroups are precisely those whose Frobenius gap does not depend on the relaxed monomial ordering. We estimate the number of Frobenius generalized numerical semigroup with a given Frobenius gap F = (F(1), ... , F(d)) is an element of Nd and show that it is close to root 3(F(1)+/- 1)center dot center dot center dot(F(d)+/- 1) for large d. We define notions of quasiirreducibility and quasi-symmetry for generalized numerical semigroups. While in the case of d = 1 these notions coincide with irreducibility and symmetry, they are distinct in higher dimensions.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] On isolated gaps in numerical semigroups
    Smith, Harold J.
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (01) : 123 - 129
  • [22] Gaps in nonsymmetric numerical semigroups
    Aicardi, Francesca
    Fel, Leonid G.
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 175 (01) : 85 - 112
  • [23] Gaps in nonsymmetric numerical semigroups
    Francesca Aicardi
    Leonid G. Fel
    Israel Journal of Mathematics, 2010, 175 : 85 - 112
  • [24] The Frobenius problem for numerical semigroups with multiplicity four
    J. C. Rosales
    M. B. Branco
    Semigroup Forum, 2011, 83 : 468 - 478
  • [25] The covariety of numerical semigroups with fixed Frobenius number
    Moreno-Frias, M. A.
    Rosales, J. C.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 60 (02) : 555 - 568
  • [26] The Frobenius problem for numerical semigroups with multiplicity four
    Rosales, J. C.
    Branco, M. B.
    SEMIGROUP FORUM, 2011, 83 (03) : 468 - 478
  • [27] Frobenius pseudo-varieties in numerical semigroups
    Aureliano M. Robles-Pérez
    José Carlos Rosales
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 275 - 287
  • [28] Frobenius pseudo-varieties in numerical semigroups
    Robles-Perez, Aureliano M.
    Carlos Rosales, Jose
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (01) : 275 - 287
  • [29] A GENERALIZATION OF SYLVESTER AND FROBENIUS PROBLEMS ON NUMERICAL SEMIGROUPS
    SKUPIEN, Z
    ACTA ARITHMETICA, 1993, 65 (04) : 353 - 366
  • [30] On the Frobenius number and genus of a collection of semigroups generalizing repunit numerical semigroups
    Liu, Feihu
    Xin, Guoce
    Ye, Suting
    Yin, Jingjing
    SEMIGROUP FORUM, 2025, : 357 - 383