motion by fractional mean curvature flow;
fractional heat equation;
fractional mean curvature;
harmonic extension;
MEAN-CURVATURE FLOW;
LEVEL SETS;
APPROXIMATION SCHEME;
CONVERGENCE;
MOTION;
D O I:
10.3934/mine.2022009
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider normal velocity of smooth sets evolving by the s-fractional diffusion. We prove that for small time, the normal velocity of such sets is nearly proportional to the mean curvature of the boundary of the initial set for s is an element of [1/2, 1) while, for s is an element of (0, 1/2), it is nearly proportional to the fractional mean curvature of the initial set. Our results show that the motion by (fractional) mean curvature flow can be approximated by fractional heat diffusion and by a diffusion by means of harmonic extension of smooth sets.
机构:
Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, GermanyAlbert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
Calcagni, Gianluca
Nardelli, Giuseppe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cattolica, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
Univ Trento, Ist Nazl Fis Nucl, Grp Collegato Trento, I-38100 Povo, Trento, ItalyAlbert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Guo, Shangjiang
Zimmer, Johannes
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, EnglandHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China