Characteristics of cirrus clouds from ICESat/GLAS observations

被引:29
|
作者
Eguchi, Nawo
Yokota, Tatsuya
Inoue, Gen
机构
[1] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki 3058506, Japan
[2] Nagoya Univ, Grad Sch Environm Studies, Chikusa Ku, Aichi 4648601, Japan
关键词
D O I
10.1029/2007GL029529
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Cloud observations from the Geoscience Laser Altimeter System (GLAS) revealed characteristics of cirrus clouds in boreal autumn 2003. The vertical distribution of the central altitude of cirrus peaks 2 km below the climatological tropopause, which is 14.5 km in the tropics and 9.5 km in the northern midlatitudes. The mean location of the peak in deep convection is north of the Equator (7.5 degrees N) but the top of zonally averaged cirrus is almost constant at 14.5 km in the tropics. This suggests that the height of tropical cirrus is closely linked to anvil cirrus from deep convection and lower temperatures in the tropopause symmetric with respect to the Equator. Cirrus clouds in the midlatitudes have a greater optical depth than those at other latitudes. The zonally averaged thickness of cirrus is about 1.6 km regardless of latitude.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Landcover attributes from ICESat GLAS data in central Siberia
    Ranson, KJ
    Sun, G
    Kovacs, K
    Kharuk, VI
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 753 - 756
  • [22] Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM
    Fatoyinbo, Temilola E.
    Simard, Marc
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (02) : 668 - 681
  • [23] Earth science applications of ICESat/GLAS
    Wang, Xianwei
    Cheng, Xiao
    Gong, Peng
    Huang, Huabing
    Li, Zhan
    Li, Xiaowen
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (23) : 8837 - 8864
  • [24] Revisiting global satellite observations of stratospheric cirrus clouds
    Zou, Ling
    Griessbach, Sabine
    Hoffmann, Lars
    Gong, Bing
    Wang, Lunche
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (16) : 9939 - 9959
  • [25] Observations of cirrus clouds using polarization Mie lidar
    Chi, Ruli
    Liu, Houtong
    Wang, Zhenzhu
    Liu, Dong
    Zhou, Jun
    Hu, Huanling
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2009, 21 (09): : 1295 - 1300
  • [26] An algorithm for slope estimation from repeat tracks of ICESat/GLAS
    Ma, Lian
    Li, Xiaolu
    Xu, Teng
    Xu, Lijun
    Feng, Xianzong
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2014, 39 (09): : 1121 - 1127
  • [27] In situ observations of the microphysical properties of young cirrus clouds
    Strom, J
    Strauss, B
    Anderson, T
    Schroder, F
    Heintzenberg, J
    Wendling, P
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1997, 54 (21) : 2542 - 2553
  • [28] Seasonal migration of cirrus clouds by using CALIOP observations
    Nee, Jan-Bai
    Lu, Chien-Yin
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 2021, 133 (03) : 579 - 587
  • [29] Seasonal migration of cirrus clouds by using CALIOP observations
    Jan-Bai Nee
    Chien-Yin Lu
    Meteorology and Atmospheric Physics, 2021, 133 : 579 - 587
  • [30] A microphysics guide to cirrus - Part 2: Climatologies of clouds and humidity from observations
    Kraemer, Martina
    Rolf, Christian
    Spelten, Nicole
    Afchine, Armin
    Fahey, David
    Jensen, Eric
    Khaykin, Sergey
    Kuhn, Thomas
    Lawson, Paul
    Lykov, Alexey
    Pan, Laura L.
    Riese, Martin
    Rollins, Andrew
    Stroh, Fred
    Thornberry, Troy
    Wolf, Veronika
    Woods, Sarah
    Spichtinger, Peter
    Quaas, Johannes
    Sourdeval, Odran
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (21) : 12569 - 12608