Cross-domain person re-identification using Dual Generation Learning in camera sensor networks

被引:2
|
作者
Zhang, Zhong [1 ]
Wang, Yanan [1 ]
Liu, Shuang [1 ]
机构
[1] Tianjin Normal Univ, Tianjin Key Lab Wireless Mobile Commun & Power Tr, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Camera sensor networks; Cross-domain person re-identification; Dual generation learning; CONVOLUTIONAL NEURAL-NETWORK; AGGREGATION;
D O I
10.1016/j.adhoc.2019.102019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cross-domain person re-identification (Re-ID) in camera sensor networks is a challenge task due to large domain-style and camera-style variances. In this work, we propose a novel deep learning method called Dual Generation Learning (DGL) for cross-domain person Re-ID, which simultaneously considers domain and camera styles by expanding training samples. Correspondingly, we design a three-branch deep model with different losses. We further propose Hybrid Triplet Loss (HTL) to deal with the combination of the source dataset, the target dataset and their expansions. Thus, the learned features are robust to domain shifts and camera differences. The experimental results prove that DGL achieves the promising generalization ability and accuracy compared with the state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Self-Supervised Agent Learning for Unsupervised Cross-Domain Person Re-Identification
    Jiang, Kongzhu
    Zhang, Tianzhu
    Zhang, Yongdong
    Wu, Feng
    Rui, Yong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 8549 - 8560
  • [32] Unsupervised Joint Subspace and Dictionary Learning for Enhanced Cross-Domain Person Re-Identification
    Qi, Lei
    Huo, Jing
    Fan, Xiaocong
    Shi, Yinghuan
    Gao, Yang
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1263 - 1275
  • [33] Preserving knowledge from the source domain for cross-domain person re-identification
    Gou, Yifeng
    Li, Ziqiang
    Zhang, Junyin
    Ge, Yongxin
    INFORMATION SCIENCES, 2025, 705
  • [34] Disentangling Reconstruction Network for Unsupervised Cross-Domain Person Re-Identification
    Jain, Harsh Kumar
    Kansal, Kajal
    Subramanyam, A., V
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 820 - 825
  • [35] Improving the Style Adaptation for Unsupervised Cross-Domain Person Re-identification
    Zhang, Wenyuan
    Zhu, Li
    Lu, Lu
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [36] ICMiF: Interactive cascade microformers for cross-domain person re-identification
    Huang, Jiajian
    Ge, Hongwei
    Sun, Liang
    Hou, Yaqing
    Wang, Xia
    INFORMATION SCIENCES, 2022, 617 : 177 - 192
  • [37] CDTNET: CROSS-DOMAIN TRANSFORMER BASED ON ATTRIBUTES FOR PERSON RE-IDENTIFICATION
    Guan, Mengyuan
    Xiang, Suncheng
    Liu, Ting
    Fu, Yuzhuo
    2022 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (IEEE ICMEW 2022), 2022,
  • [38] HARD SAMPLES RECTIFICATION FOR UNSUPERVISED CROSS-DOMAIN PERSON RE-IDENTIFICATION
    Liu, Chih-Ting
    Lee, Man-Yu
    Chen, Tsai-Shien
    Chien, Shao-Yi
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 429 - 433
  • [39] Unsupervised cross-domain person re-identification by instance and distribution alignment
    Lan, Xu
    Zhu, Xiatian
    Gong, Shaogang
    PATTERN RECOGNITION, 2022, 124
  • [40] Cross-Domain Person Re-Identification Based on Feature Fusion Invariance
    Zhang, Yushi
    Song, Heping
    Wei, Jiawei
    APPLIED SCIENCES-BASEL, 2024, 14 (11):