Deformations of conformal theories and non-toric quiver gauge theories

被引:22
|
作者
Butti, Agostino [1 ]
Zaffaroni, Alberto
Forcella, Davide
机构
[1] Univ Milano Bicocca, Pzza Sci 3, I-20126 Milan, Italy
[2] Univ Milano Bicocca, Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy
[3] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy
来源
关键词
AdS-CFT correspondence; gauge-gravity correspondence;
D O I
10.1088/1126-6708/2007/02/081
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss several examples of non-toric quiver gauge theories dual to Sasaki-Einstein manifolds with U(1) 2 or U(1) isometry. We give a general method for constructing non-toric examples by adding relevant deformations to the toric case. For all examples, we are able to make a complete comparison between the prediction for R-charges based on geometry and on quantum field theory. We also give a general discussion of the spectrum of conformal dimensions for mesonic and baryonic operators for a generic quiver theory; in the toric case we make an explicit comparison between R-charges of mesons and baryons.
引用
收藏
页数:51
相关论文
共 50 条
  • [21] Parameter space of quiver gauge theories
    Wijnholt, Martijn
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 12 (04) : 711 - 755
  • [22] Supersymmetric quiver gauge theories on the lattice
    Anosh Joseph
    Journal of High Energy Physics, 2014
  • [23] Supersymmetric quiver gauge theories on the lattice
    Joseph, Anosh
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [24] Quiver gauge theories: beyond reflexivity
    Bao, Jiakang
    Colverd, Grace Beaney
    He, Yang-Hui
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)
  • [25] Quantum Geometry and Quiver Gauge Theories
    Nikita Nekrasov
    Vasily Pestun
    Samson Shatashvili
    Communications in Mathematical Physics, 2018, 357 : 519 - 567
  • [26] Stringy instantons and quiver gauge theories
    Florea, Bogdan
    Kachru, Shamit
    McGreevy, John
    Saulina, Natalia
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (05):
  • [27] Quiver Gauge Theories: Finitude and Trichotomoty
    He, Yang-Hui
    MATHEMATICS, 2018, 6 (12):
  • [28] Dimer models and quiver gauge theories
    Pichai, Ramadevi
    6TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES (QTS6), 2013, 462
  • [29] Index for orbifold quiver gauge theories
    Nakayama, Y
    PHYSICS LETTERS B, 2006, 636 (02) : 132 - 136
  • [30] Topological conformal field theories and gauge theories
    Costello, Kevin
    GEOMETRY & TOPOLOGY, 2007, 11 : 1539 - 1579