Feynman diagrams and a combination of the integration by parts and the integration by fractional expansion techniques

被引:1
|
作者
Gonzalez, Ivan [1 ]
Loewe, M. [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Fis, Santiago 22, Chile
来源
PHYSICAL REVIEW D | 2010年 / 81卷 / 02期
关键词
3-POINT; MASSLESS; BOX;
D O I
10.1103/PhysRevD.81.026003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we show how to improve and extend the integration by fractional expansion technique (IBFE) by applying it to certain families of scalar massive Feynman diagrams. The strategy is based on combining this method together with the integration by parts technique. In particular, we want to calculate certain Feynman diagrams which have a triangle loop as a subgraph. The main idea is to use the integration by parts technique in this subgraph in order to simplify the topology of the original diagram in which it is immersed, using then, in a second step, the IBFE technique. The result we have obtained, after the application of both techniques, represents a simplification in the complexity of the solution, compared with having used only the IBFE technique.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] INTEGRATION BY PARTS
    GRIFFITH, WS
    AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (05): : 389 - 389
  • [32] INTEGRATION BY PARTS
    BANDY, C
    TEXAS JOURNAL OF SCIENCE, 1990, 42 (03): : 306 - 308
  • [33] Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals
    Boehm, Janko
    Georgoudis, Alessandro
    Larsen, Kasper J.
    Schulze, Mathias
    Zhang, Yang
    PHYSICAL REVIEW D, 2018, 98 (02)
  • [34] Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space
    Bendle, Dominik
    Boehm, Janko
    Decker, Wolfram
    Georgoudis, Alessandro
    Pfreundt, Franz-Josef
    Rahn, Mirko
    Wasser, Pascal
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [35] Integration by parts formulas involving generalized Fourier-Feynman transforms on function space
    Chang, SJ
    Choi, JG
    Skoug, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (07) : 2925 - 2948
  • [36] Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space
    Dominik Bendle
    Janko Böhm
    Wolfram Decker
    Alessandro Georgoudis
    Franz-Josef Pfreundt
    Mirko Rahn
    Pascal Wasser
    Yang Zhang
    Journal of High Energy Physics, 2020
  • [37] Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes
    Gong, Wei
    Nagy, Zoltan
    Soper, Davison E.
    PHYSICAL REVIEW D, 2009, 79 (03):
  • [38] Differential Reduction Techniques for the Evaluation of Feynman Diagrams
    Yost, S. A.
    Bytev, V. V.
    Kalmykov, M. Yu.
    Kniehl, Bernd A.
    Ward, B. F. L.
    35TH INTERNATIONAL CONFERENCE OF HIGH ENERGY PHYSICS (ICHEP 2010), 2010,
  • [39] Large mass expansion versus small momentum expansion of Feynman diagrams
    Fleischer, J
    Kalmykov, MY
    Veretin, OL
    PHYSICS LETTERS B, 1998, 427 (1-2) : 141 - 146
  • [40] FRACTIONAL INTEGRATION
    HIRSCHMAN, II
    AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (04) : 531 - 546