Optimizing the coordinated transcription of central xylose-metabolism genes in Saccharomyces cerevisiae

被引:6
|
作者
Zhang, Xinyuan [1 ]
Wang, Jingyu [2 ]
Zhang, Weiwei [1 ]
Hou, Jun yan [1 ]
Xiao, Wei [1 ]
Cao, Limin [1 ]
机构
[1] Capital Normal Univ, Coll Life Sci, 105 Xisanhuanbeilu, Beijing 100048, Peoples R China
[2] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
中国国家自然科学基金;
关键词
Saccharomyces cerevisiae; Xylose; Copy number variation; Two-stage transcriptional reprogramming; Expression balance; ETHANOL-PRODUCTION; CELLULOSIC ETHANOL; SUGAR TRANSPORTER; YEAST; EXPRESSION; FERMENTATION; OPTIMIZATION; PREFERENCE; EVOLUTION; PATHWAY;
D O I
10.1007/s00253-018-9172-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The efficient fermentation of xylose can improve biofuel production. We previously developed a two-stage transcriptional reprogramming (TSTR) strategy (including a glucose fermentation stage and a xylose fermentation stage) and demonstrated its application for the construction of Saccharomyces cerevisiae strains with efficient xylose utilization. In this study, we used these as initial strains to assess the effects of copy number variation (CNV) on optimal gene expression and rewiring the redox balance of the xylose utilization pathway. We obtained strains that contained several integrated copies of XYL1, XYL2, and XKS1 and showed increased ethanol yields. An examination of the individual and combined effects of CNVs of key genes and the redox balance pathway revealed that the TSTR strategy improves ethanol production efficiency. Furthermore, XYL1 or XYL2 overexpression was related to improved xylose utilization. These results showed that strains with faster growth and/or higher ethanol production produced more ethanol from xylose via the synthetic xylose-assimilation pathway. Accordingly, TSTR is an effective strategy to improve xylose metabolism in industrial yeast strains.
引用
收藏
页码:7207 / 7217
页数:11
相关论文
共 50 条
  • [31] Simulating Extracellular Glucose Signals Enhances Xylose Metabolism in Recombinant Saccharomyces cerevisiae
    Wu, Meiling
    Li, Hongxing
    Wei, Shan
    Wu, Hongyu
    Wu, Xianwei
    Bao, Xiaoming
    Hou, Jin
    Liu, Weifeng
    Shen, Yu
    MICROORGANISMS, 2020, 8 (01)
  • [32] EFFECT OF ACRYLONITRILE ON THE TRANSCRIPTION OF SPECIFIC GENES IN SACCHAROMYCES-CEREVISIAE
    THUROFF, E
    KAUFER, NF
    LOCHMANN, ER
    MOLECULAR & GENERAL GENETICS, 1986, 202 (02): : 336 - 337
  • [33] Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering
    Zha, Jian
    Shen, Minghua
    Hu, Menglong
    Song, Hao
    Yuan, Yingjin
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2014, 41 (01) : 27 - 39
  • [34] Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose
    Cao, Limin
    Tang, Xingliang
    Zhang, Xinyuan
    Zhang, Jingtao
    Tian, Xuelei
    Wang, Jingyu
    Xiong, Mingyong
    Xiao, Wei
    METABOLIC ENGINEERING, 2014, 24 : 150 - 159
  • [35] Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
    Lu, Chenfeng
    Jeffries, Thomas
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (19) : 6072 - 6077
  • [36] Promoter choice for XKS1 overexpression impacts xylose metabolism in Saccharomyces cerevisiae
    Souza, Brenda Cristina
    Vargas, Beatriz de Oliveira
    Seguchi, Gustavo
    Carazzolle, Marcelo F.
    Pereira, Goncalo Amarante Guimaraes
    de Mello, Fellipe da Silveira Bezerra
    JOURNAL OF APPLIED MICROBIOLOGY, 2025, 136 (03)
  • [37] Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture
    Pitkänen, JP
    Aristidou, A
    Salusjärvi, L
    Ruohonen, L
    Penttilä, M
    METABOLIC ENGINEERING, 2003, 5 (01) : 16 - 31
  • [38] Regulation of central carbon metabolism in Saccharomyces cerevisiae by metabolic inhibitors
    Matsuda, Fumio
    Shirai, Tomokazu
    Ishii, Jun
    Kondo, Akihiko
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2013, 116 (01) : 59 - 64
  • [39] Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis
    Jin, YS
    Lee, TH
    Choi, YD
    Ryu, YW
    Seo, JH
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2000, 10 (04) : 564 - 567
  • [40] Heterologous Expression of Aspergillus oryzae Xylose Reductase and Xylitol Dehydrogenase Genes Facilitated Xylose Utilization in the Yeast Saccharomyces cerevisiae
    Kaneda, Jitsuro
    Sasaki, Kenji
    Gomi, Katsuya
    Shintani, Takahiro
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2011, 75 (01) : 168 - 170