A CRISPR-Cas9 system for multiple genome editing and pathway assembly in Candida tropicalis

被引:26
|
作者
Zhang, Lihua [1 ,2 ]
Zhang, Haibing [1 ,2 ]
Liu, Yufei [2 ]
Zhou, Jingyu [1 ,2 ]
Shen, Wei [1 ,2 ]
Liu, Liming [1 ,3 ]
Li, Qi [1 ,2 ]
Chen, Xianzhong [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Biotechnol, Wuxi, Jiangsu, Peoples R China
[3] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi, Jiangsu, Peoples R China
关键词
Candida tropicalis; CRISPR-Cas9; genome editing; pathway assembly; yeast promoters; SACCHAROMYCES-CEREVISIAE; XYLITOL PRODUCTION; IN-VITRO; GENES; INTEGRATION; STRATEGY; EXPRESSION; STEP; VIVO; DNA;
D O I
10.1002/bit.27207
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genetic manipulation is among the most important tools for synthetic biology; however, modifying multiple genes is extremely time-consuming and can sometimes be impossible when dealing with gene families. Here, we present a clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) system for use in the diploid yeast Candida tropicalis that is vastly superior to traditional techniques. This system enables the rapid and reliable introduction of multiple genetic deletions or mutations, as well as a stable expression using an integrated CRISPR-Cas9 cassette or a transient CRISPR-Cas9 cassette, together with a short donor DNA. We further show that the system can be used to promote the in vivo assembly of multiple DNA fragments and their stable integration into a target locus (or loci) in C. tropicalis. Based on this system, we present a platform for the biosynthesis of beta-carotene and its derivatives. These results enable the practical application of C. tropicalis and the application of the system to other organisms.
引用
收藏
页码:531 / 542
页数:12
相关论文
共 50 条
  • [1] Development of a CRISPR-Cas9 System for Efficient Genome Editing of Candida lusitaniae
    Norton, Emily L.
    Sherwood, Racquel K.
    Bennett, Richard J.
    [J]. MSPHERE, 2017, 2 (03):
  • [2] A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum
    Ferrara, Massimo
    Haidukowski, Miriam
    Logrieco, Antonio F.
    Leslie, John F.
    Mule, Giuseppina
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [3] A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum
    Massimo Ferrara
    Miriam Haidukowski
    Antonio F. Logrieco
    John F. Leslie
    Giuseppina Mulè
    [J]. Scientific Reports, 9
  • [4] Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System
    Altenbuchner, Josef
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (17) : 5421 - 5427
  • [5] gRNA validation for wheat genome editing with the CRISPR-Cas9 system
    Arndell, Taj
    Sharma, Niharika
    Langridge, Peter
    Baumann, Ute
    Watson-Haigh, Nathan S.
    Whitford, Ryan
    [J]. BMC BIOTECHNOLOGY, 2019, 19 (01)
  • [6] Development of CRISPR-Cas9 genome editing system in Talaromyces marneffei
    Zhang, Xiangmei
    Hu, Xueyan
    Jan, Saad
    Rasheed, Syed Majid
    Zhang, Yun
    Du, Minghao
    Yang, Ence
    [J]. MICROBIAL PATHOGENESIS, 2021, 154
  • [7] Genome editing in Shiraia bambusicola using CRISPR-Cas9 system
    Deng, Huaxiang
    Gao, Ruijie
    Liao, Xiangru
    Cai, Yujie
    [J]. JOURNAL OF BIOTECHNOLOGY, 2017, 259 : 228 - 234
  • [8] Inflammation conditional genome editing mediated by the CRISPR-Cas9 system
    Yuan, Tingting
    Tang, Honglin
    Xu, Xiaojie
    Shao, Jingjing
    Wu, Gaojun
    Cho, Young-Chang
    Ping, Yuan
    Liang, Guang
    [J]. ISCIENCE, 2023, 26 (06)
  • [9] The CRISPR-Cas9 Genome Editing System: Not as Precise as Previously Believed
    Mattei, Tobias A.
    [J]. WORLD NEUROSURGERY, 2018, 118 : 377 - 378
  • [10] gRNA validation for wheat genome editing with the CRISPR-Cas9 system
    Taj Arndell
    Niharika Sharma
    Peter Langridge
    Ute Baumann
    Nathan S. Watson-Haigh
    Ryan Whitford
    [J]. BMC Biotechnology, 19