Computer-aided diagnosis of COVID-19 from chest X-ray images using histogram-oriented gradient features and Random Forest classifier

被引:5
|
作者
Jawahar, Malathy [1 ]
Prassanna, J. [2 ]
Ravi, Vinayakumar [3 ]
Anbarasi, L. Jani [2 ]
Jasmine, S. Graceline [2 ]
Manikandan, R. [4 ]
Sekaran, Ramesh [5 ]
Kannan, Suthendran [6 ]
机构
[1] CSIR Cent Leather Res Inst, Leather Proc Technol Div, Chennai 600020, Tamil Nadu, India
[2] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai 600127, Tamil Nadu, India
[3] Prince Mohammad Bin Fahd Univ, Ctr Artificial Intelligence, Khobar, Saudi Arabia
[4] SASTRA Deemed Univ, Sch Comp, Thanjavur, India
[5] Velgapudi Ramakrishna Siddhartha Engn Coll, Dept Informat Technol, Vijayawada, India
[6] Kalasalingam Acad Res & Educ, Dept Informat Technol, Srivilliputhur, India
关键词
COVID-19; Classification; Random Forest; HOG; Features extraction; CORONAVIRUS;
D O I
10.1007/s11042-022-13183-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The decision-making process is very crucial in healthcare, which includes quick diagnostic methods to monitor and prevent the COVID-19 pandemic disease from spreading. Computed tomography (CT) is a diagnostic tool used by radiologists to treat COVID patients. COVID x-ray images have inherent texture variations and similarity to other diseases like pneumonia. Manually diagnosing COVID X-ray images is a tedious and challenging process. Extracting the discriminant features and fine-tuning the classifiers using low-resolution images with a limited COVID x-ray dataset is a major challenge in computer aided diagnosis. The present work addresses this issue by proposing and implementing Histogram Oriented Gradient (HOG) features trained with an optimized Random Forest (RF) classifier. The proposed HOG feature extraction method is evaluated with Gray-Level Co-Occurrence Matrix (GLCM) and Hu moments. Results confirm that HOG is found to reflect the local description of edges effectively and provide excellent structural features to discriminate COVID and non-COVID when compared to the other feature extraction techniques. The performance of the RF is compared with other classifiers such as Linear Regression (LR), Linear Discriminant Analysis (LDA), K-nearest neighbor (kNN), Classification and Regression Trees (CART), Random Forest (RF), Support Vector Machine (SVM), and Multi-layer perceptron neural network (MLP). Experimental results show that the highest classification accuracy (99. 73%) is achieved using HOG trained by using the Random Forest (RF) classifier. The proposed work has provided promising results to assist radiologists/physicians in automatic COVID diagnosis using X-ray images.
引用
收藏
页码:40451 / 40468
页数:18
相关论文
共 50 条
  • [21] Automatic detection of COVID-19 and pneumonia from chest X-ray images using texture features
    Sheikhi, Farnaz
    Taghdiri, Aliakbar
    Moradisabzevar, Danial
    Rezakhani, Hanieh
    Daneshkia, Hasti
    Goodarzi, Mobina
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (18): : 21449 - 21473
  • [22] Classification of COVID-19 from chest x-ray images using deep features and correlation coefficient
    Kumar, Rahul
    Arora, Ridhi
    Bansal, Vipul
    Sahayasheela, Vinodh J.
    Buckchash, Himanshu
    Imran, Javed
    Narayanan, Narayanan
    Pandian, Ganesh N.
    Raman, Balasubramanian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (19) : 27631 - 27655
  • [23] Automatic detection of COVID-19 and pneumonia from chest X-ray images using texture features
    Farnaz Sheikhi
    Aliakbar Taghdiri
    Danial Moradisabzevar
    Hanieh Rezakhani
    Hasti Daneshkia
    Mobina Goodarzi
    The Journal of Supercomputing, 2023, 79 : 21449 - 21473
  • [24] Classification of COVID-19 from chest x-ray images using deep features and correlation coefficient
    Rahul Kumar
    Ridhi Arora
    Vipul Bansal
    Vinodh J Sahayasheela
    Himanshu Buckchash
    Javed Imran
    Narayanan Narayanan
    Ganesh N Pandian
    Balasubramanian Raman
    Multimedia Tools and Applications, 2022, 81 : 27631 - 27655
  • [25] A deep and handcrafted features-based framework for diagnosis of COVID-19 from chest x-ray images
    Bozkurt, Ferhat
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (05):
  • [26] Early Detection of Tuberculosis using Chest X-Ray (CXR) with Computer-Aided Diagnosis
    Ilena, Gabriella
    Kamarga, Stella A.
    Setiawan, Agung W.
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (IBIOMED): SMART TECHNOLOGY FOR BETTER SOCIETY, 2018, : 76 - 79
  • [27] Diagnosis of Coronavirus Disease (COVID-19) from Chest X-Ray images using modified XceptionNet
    Singh, Krishna Kant
    Siddhartha, Manu
    Singh, Akansha
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2020, 23 : S91 - S105
  • [28] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Muhab Hariri
    Ercan Avşar
    Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [29] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Hariri, Muhab
    Avsar, Ercan
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 12 (01):
  • [30] A new approach for computer-aided detection of coronavirus (COVID-19) from CT and X-ray images using machine learning methods
    Saygili, Ahmet
    APPLIED SOFT COMPUTING, 2021, 105