Minimum cost time-varying network flow problems

被引:18
|
作者
Nasrabadi, Ebrahim [1 ]
Hashemi, S. Mehdi [1 ]
机构
[1] Amirkabir Univ Technol, Dept Comp Sci, Tehran, Iran
来源
OPTIMIZATION METHODS & SOFTWARE | 2010年 / 25卷 / 03期
关键词
network flows; time-varying networks; shortest dynamic path; minimum cost dynamic flow; MAXIMAL DYNAMIC FLOWS; SHORTEST-PATH; ALGORITHMS;
D O I
10.1080/10556780903239121
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper deals with a general minimum cost dynamic flow problem in a discrete time model with time-varying transit times, transit costs, transit capacities, storage costs, and storage capacities. For this problem, an algorithm of time complexity O(V nT(n+T)) is presented, where V is an upper bound on the total supply, n is the number of nodes, and T denotes the given time horizon of the dynamic flow problem. The algorithm is a discrete-time version of the successive shortest path algorithm.
引用
收藏
页码:429 / 447
页数:19
相关论文
共 50 条
  • [21] Time-varying network models
    Crane, Harry
    BERNOULLI, 2015, 21 (03) : 1670 - 1696
  • [22] Time-varying network optimiztion
    Stein, Oliver
    Still, Georg
    Terlaky, Tamas
    Weber, Gerhard-Wilhelm
    CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2008, 16 (02) : 107 - 109
  • [23] A Time-Varying Network for Cryptocurrencies
    Guo, Li
    Haerdle, Wolfgang Karl
    Tao, Yubo
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 437 - 456
  • [24] Time-Varying FIR Transmultiplexers With Minimum Redundancy
    Ribeiro, Cassio B.
    de Campos, Marcello L. R.
    Diniz, Paulo S. R.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (03) : 1113 - 1127
  • [25] RELAXATION METHODS FOR MINIMUM COST ORDINARY AND GENERALIZED NETWORK FLOW PROBLEMS
    BERTSEKAS, DP
    TSENG, P
    OPERATIONS RESEARCH, 1988, 36 (01) : 93 - 114
  • [26] Concave minimum cost network flow problems solved with a colony of ants
    Monteiro, Marta S. R.
    Fontes, Dalila B. M. M.
    Fontes, Fernando A. C. C.
    JOURNAL OF HEURISTICS, 2013, 19 (01) : 1 - 33
  • [27] Heuristic solutions for general concave minimum cost network flow problems
    Fontes, Dalila B. M. M.
    Goncalves, Jose Fernando
    NETWORKS, 2007, 50 (01) : 67 - 76
  • [28] Concave minimum cost network flow problems solved with a colony of ants
    Marta S. R. Monteiro
    Dalila B. M. M. Fontes
    Fernando A. C. C. Fontes
    Journal of Heuristics, 2013, 19 : 1 - 33
  • [29] Synchronization in an homogeneous, time-varying network with nonuniform time-varying communication delays
    Stoorvogel, Anton A.
    Saberi, Ali
    Zhang, Meirong
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 910 - 915
  • [30] MINIMUM-DELAY MAXIMUM-GAUGE ROUTES IN A TIME-VARYING DYNAMIC NETWORK
    KYAN, S
    ONAGA, K
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1975, 58 (03): : 10 - 17