Untangling biological factors influencing trajectory inference from single cell data

被引:6
|
作者
Charrout, Mohammed [1 ,2 ]
Reinders, Marcel J. T. [1 ,2 ]
Mahfouz, Ahmed [1 ,2 ,3 ]
机构
[1] Delft Univ Technol, Delft Bioinformat Lab, NL-2628 XE Delft, Netherlands
[2] Leiden Univ, Leiden Computat Biol Ctr, Med Ctr, NL-2333 ZC Leiden, Netherlands
[3] Leiden Univ, Dept Human Genet, Med Ctr, NL-2333 ZC Leiden, Netherlands
基金
欧盟地平线“2020”;
关键词
RADIAL GLIA; NEUROGENESIS; EXPRESSION; HETEROGENEITY; ROLES; BRAIN; FABP7;
D O I
10.1093/nargab/lqaa053
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Advances in single-cell RNA sequencing over the past decade has shifted the discussion of cell identity toward the transcriptional state of the cell. While the incredible resolution provided by single-cell RNA sequencing has led to great advances in unraveling tissue heterogeneity and inferring cell differentiation dynamics, it raises the question of which sources of variation are important for determining cellular identity. Here we show that confounding biological sources of variation, most notably the cell cycle, can distort the inference of differentiation trajectories. We show that by factorizing single cell data into distinct sources of variation, we can select a relevant set of factors that constitute the core regulators for trajectory inference, while filtering out confounding sources of variation (e.g. cell cycle) which can perturb the inferred trajectory.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Inference of mutability landscapes of tumors from single cell sequencing data
    Tsyvina, Viachaslau
    Zelikovsky, Alex
    Snir, Sagi
    Skums, Pavel
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (11)
  • [22] Tree inference for single-cell data
    Jahn, Katharina
    Kuipers, Jack
    Beerenwinkel, Niko
    GENOME BIOLOGY, 2016, 17
  • [23] Tree inference for single-cell data
    Katharina Jahn
    Jack Kuipers
    Niko Beerenwinkel
    Genome Biology, 17
  • [24] TiC2D: Trajectory Inference From Single-Cell RNA-Seq Data Using Consensus Clustering
    Gan, Yanglan
    Li, Ning
    Guo, Cheng
    Zou, Guobing
    Guan, Jihong
    Zhou, Shuigeng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (04) : 2512 - 2522
  • [25] Data-driven selection of analysis decisions in single-cell RNA-seq trajectory inference
    Dong, Xiaoru
    Leary, Jack R.
    Yang, Chuanhao
    Brusko, Maigan A.
    Brusko, Todd M.
    Bacher, Rhonda
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [26] CStreet: a computed Cell State trajectory inference method for time-series single-cell RNA sequencing data
    Zhao, Chengchen
    Xiu, Wenchao
    Hua, Yuwei
    Zhang, Naiqian
    Zhang, Yong
    BIOINFORMATICS, 2021, 37 (21) : 3774 - 3780
  • [27] Bayesian inference of ocean diffusivity from Lagrangian trajectory data
    Ying, Y. K.
    Maddison, J. R.
    Vanneste, J.
    OCEAN MODELLING, 2019, 140
  • [28] Optimizing biological inferences from single-cell data
    Nature Reviews Genetics, 2019, 20 : 249 - 249
  • [29] Optimizing biological inferences from single-cell data
    不详
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 249 - 249
  • [30] Fast intratumor heterogeneity inference from single-cell sequencing data
    Can Kızılkale
    Farid Rashidi Mehrabadi
    Erfan Sadeqi Azer
    Eva Pérez-Guijarro
    Kerrie L. Marie
    Maxwell P. Lee
    Chi-Ping Day
    Glenn Merlino
    Funda Ergün
    Aydın Buluç
    S. Cenk Sahinalp
    Salem Malikić
    Nature Computational Science, 2022, 2 : 577 - 583