Untangling biological factors influencing trajectory inference from single cell data

被引:6
|
作者
Charrout, Mohammed [1 ,2 ]
Reinders, Marcel J. T. [1 ,2 ]
Mahfouz, Ahmed [1 ,2 ,3 ]
机构
[1] Delft Univ Technol, Delft Bioinformat Lab, NL-2628 XE Delft, Netherlands
[2] Leiden Univ, Leiden Computat Biol Ctr, Med Ctr, NL-2333 ZC Leiden, Netherlands
[3] Leiden Univ, Dept Human Genet, Med Ctr, NL-2333 ZC Leiden, Netherlands
基金
欧盟地平线“2020”;
关键词
RADIAL GLIA; NEUROGENESIS; EXPRESSION; HETEROGENEITY; ROLES; BRAIN; FABP7;
D O I
10.1093/nargab/lqaa053
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Advances in single-cell RNA sequencing over the past decade has shifted the discussion of cell identity toward the transcriptional state of the cell. While the incredible resolution provided by single-cell RNA sequencing has led to great advances in unraveling tissue heterogeneity and inferring cell differentiation dynamics, it raises the question of which sources of variation are important for determining cellular identity. Here we show that confounding biological sources of variation, most notably the cell cycle, can distort the inference of differentiation trajectories. We show that by factorizing single cell data into distinct sources of variation, we can select a relevant set of factors that constitute the core regulators for trajectory inference, while filtering out confounding sources of variation (e.g. cell cycle) which can perturb the inferred trajectory.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Untangling biological factors influencing trajectory inference from single cell data (vol 2, 10.1093/nargab/lqaa053, 2020)
    Charrout, Mohammed
    Reinders, Marcel J. T.
    Mahfouz, Ahmed
    NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (04)
  • [2] Cell-connectivity-guided trajectory inference from single-cell data
    Smolander, Johannes
    Junttila, Sini
    Elo, Laura L.
    BIOINFORMATICS, 2023, 39 (09)
  • [3] Recent advances in trajectory inference from single-cell omics data
    Deconinck, Louise
    Cannoodt, Robrecht
    Saelens, Wouter
    Deplancke, Bart
    Saeys, Yvan
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 27
  • [4] Trajectory inference from single-cell genomics data with a process time model
    Fang, Meichen
    Gorin, Gennady
    Pachter, Lior
    PLOS COMPUTATIONAL BIOLOGY, 2025, 21 (01)
  • [5] Gene trajectory inference for single-cell data by optimal transport metrics
    Qu, Rihao
    Cheng, Xiuyuan
    Sefik, Esen
    Stanley, Jay S.
    Landa, Boris
    Strino, Francesco
    Platt, Sarah
    Garritano, James
    Odell, Ian D.
    Coifman, Ronald
    Flavell, Richard A.
    Myung, Peggy
    Kluger, Yuval
    NATURE BIOTECHNOLOGY, 2025, 43 (02) : 258 - 268
  • [6] Generalized and scalable trajectory inference in single-cell omics data with VIA
    Stassen, Shobana, V
    Yip, Gwinky G. K.
    Wong, Kenneth K. Y.
    Ho, Joshua W. K.
    Tsia, Kevin K.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] A Novel Trajectory Inference Method on Single-Cell Gene Expression Data
    Tang, Daoxu
    Lu, Xinguo
    Jiang, Kaibao
    Sun, Fengxu
    Li, Jinxin
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 364 - 373
  • [8] Generalized and scalable trajectory inference in single-cell omics data with VIA
    Shobana V. Stassen
    Gwinky G. K. Yip
    Kenneth K. Y. Wong
    Joshua W. K. Ho
    Kevin K. Tsia
    Nature Communications, 12
  • [9] Computational methods for trajectory inference from single-cell transcriptomics
    Cannoodt, Robrecht
    Saelens, Wouter
    Saeys, Yvan
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 (11) : 2496 - 2506
  • [10] Hubness reduction improves clustering and trajectory inference in single-cell transcriptomic data
    Amblard, Elise
    Bac, Jonathan
    Chervov, Alexander
    Soumelis, Vassili
    Zinovyev, Andrei
    BIOINFORMATICS, 2022, 38 (04) : 1045 - 1051