Relative Entropy of Random States and Black Holes

被引:22
|
作者
Kudler-Flam, Jonah [1 ]
机构
[1] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
关键词
STATISTICAL-MECHANICS; QUANTUM; INFORMATION; CHAOS;
D O I
10.1103/PhysRevLett.126.171603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relative entropy of highly excited quantum states. First, we sample states from the Wishart ensemble and develop a large-N diagrammatic technique for the relative entropy. The solution is exactly expressed in terms of elementary functions. We compare the analytic results to small-N numerics, finding precise agreement. Furthermore, the random matrix theory results accurately match the behavior of chaotic many-body eigenstates, a manifestation of eigenstate thermalization. We apply this formalism to the AdS/CFT correspondence where the relative entropy measures the distinguishability between different black hole microstates. We fmd that black hole microstates are distinguishable even when the observer has arbitrarily small access to the quantum state, though the distinguishability is nonperturbatively small in Newton's constant. Finally, we interpret these results in the context of the subsystem eigenstate thermalization hypothesis (SETH), concluding that holographic systems obey SETH up to subsystems half the size of the total system.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Number and entropy of halo black holes
    Frampton, Paul H.
    Ludwick, Kevin
    ASTROPARTICLE PHYSICS, 2011, 34 (08) : 617 - 619
  • [42] Gravitational entropy of Kerr black holes
    Perez, Daniela
    Romero, Gustavo E.
    GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (09) : 1 - 16
  • [43] Thermal fields, entropy and black holes
    Frolov, VP
    Fursaev, DV
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (08) : 2041 - 2074
  • [44] Precision entropy of spinning black holes
    Castro, Alejandra
    Larsen, Finn
    Davis, Joshua L.
    Kraus, Per
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (09):
  • [45] The entropy for general extremal black holes
    Mei, Jianwei
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (04):
  • [46] Relative entropy for random motion in a random medium
    den Hollander, F
    ENTROPY-BOOK, 2003, : 215 - 231
  • [47] Entropy Functions For Accelerating Black Holes
    Boido, Andrea
    Gauntlett, Jerome P.
    Martelli, Dario
    Sparks, James
    PHYSICAL REVIEW LETTERS, 2023, 130 (09)
  • [48] Spin Entropy for Kerr Black Holes
    G. Allemandi
    L. Fatibene
    M. Francaviglia
    General Relativity and Gravitation, 2001, 33 : 1371 - 1380
  • [49] Corrected Entropy of BTZ Black Holes
    Hoda Farahani
    Jafar Sadeghi
    Hassan Saadat
    International Journal of Theoretical Physics, 2012, 51 : 3721 - 3726
  • [50] Braneworld black holes and entropy bounds
    Heydarzade, Y.
    Hadi, H.
    Corda, C.
    Darabi, F.
    PHYSICS LETTERS B, 2018, 776 : 457 - 463