Approximate transitivity of the ergodic action of the group of finite permutations of N on {0,1}N

被引:0
|
作者
Baker, B. Mitchell [1 ]
Giordano, Thierry [2 ]
Munteanu, Radu B. [3 ,4 ]
机构
[1] US Naval Acad, Math Dept, Chauvenet Hall,572C Holloway Rd, Annapolis, MD 21402 USA
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[3] Univ Bucharest, Dept Math, 14 Acad St, Bucharest 010014, Romania
[4] Romanian Acad, Simion Stoilow Inst Math, 21 Calea Grivitei St, Bucharest 010702, Romania
基金
加拿大自然科学与工程研究理事会;
关键词
VON-NEUMANN-ALGEBRAS; AMENABLE ACTIONS; GAUGE INVARIANT; STATES;
D O I
10.1017/etds.2018.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that the natural action of the symmetric group acting on the product space {0, 1}(N) endowed with a Bernoulli measure is approximately transitive. We also extend the result to a larger class of probability measures.
引用
收藏
页码:2881 / 2895
页数:15
相关论文
共 50 条
  • [21] Forbidden (0,1)-Vectors in Hyperplanes of ℝn: The Restricted Case
    R. Ahlswede
    H. Aydinian
    L. H. Khachatrian
    Designs, Codes and Cryptography, 2003, 29 : 17 - 28
  • [22] APPROXIMATION IN LP[0,1] BY N-CONVEX FUNCTIONS
    SWETITS, JJ
    WEINSTEIN, SE
    XU, YS
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1990, 11 (1-2) : 167 - 179
  • [23] Procedures for a dynamical system on {0,1}n with DNA molecules
    Xiao, Dongmei
    Li, Wenxia
    Yu, Jiang
    Zhang, Xiaodong
    Zhang, Zhizhou
    He, Lin
    BIOSYSTEMS, 2006, 84 (03) : 207 - 216
  • [24] 2-local isometries on C(n)([0,1])
    Kawamura, Kazuhiro
    Koshimizu, Hironao
    Miura, Takeshi
    RECENT TRENDS IN OPERATOR THEORY AND APPLICATIONS, 2019, 737 : 119 - 124
  • [25] GENERATING THE GROUP OF TRANSFORMATIONS OF [0,1]
    GRZASLEWICZ, R
    ARCHIV DER MATHEMATIK, 1987, 49 (04) : 335 - 336
  • [26] The set of ratios of derangements to permutations in digraphs is dense in [0,1/2]
    Austhof, Bethany
    Bennett, Patrick
    Christo, Nick
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01): : 1 - 11
  • [27] Action of a finite quantum group on the algebra of complex N x N matrices
    Coquereaux, R
    Schieber, GE
    PARTICLES, FIELDS, AND GRAVITATION, 1998, 453 : 9 - 23
  • [28] Finite Subgroups of Continuous Bijections of [0,1]
    Bergen, Jeffrey
    AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (10): : 933 - 933
  • [29] C_n(0,1)的Dirichlet边值问题
    刘芫健
    南京邮电学院学报, 2005, (01) : 59 - 61
  • [30] Products of n open subsets in the space of continuous functions on [0,1]
    Behrends, Ehrhard
    STUDIA MATHEMATICA, 2011, 204 (01) : 73 - 95