Adaptive nearest neighbor classification using support vector machines

被引:0
|
作者
Domeniconi, C [1 ]
Gunopulos, D [1 ]
机构
[1] Univ Calif Riverside, Dept Comp Sci, Riverside, CA 92521 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The nearest neighbor technique is a simple and appealing method to address classification problems. It relies on the assumption of locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with a finite number of examples due to the curse of dimensionality. We propose a technique that computes a locally flexible metric by means of Support Vector Machines (SVMs). The maximum margin boundary found by the SVM is used to determine the most discriminant direction over the query's neighborhood. Such direction provides a local weighting scheme for input features. We present experimental evidence of classification performance improvement over the SVM algorithm alone and over a variety of adaptive learning schemes, by using both simulated and real data sets.
引用
收藏
页码:665 / 672
页数:8
相关论文
共 50 条
  • [21] A CBIR CLASSIFICATION USING SUPPORT VECTOR MACHINES
    Sugamya, Katta
    Pabboju, Suresh
    Babu, A. Vinaya
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN HUMAN MACHINE INTERACTION (HMI), 2016, : 135 - +
  • [22] Classification of Torreya Using Support Vector Machines
    Wang, Xiaodong
    Chang, Jianli
    2012 THIRD INTERNATIONAL CONFERENCE ON TELECOMMUNICATION AND INFORMATION (TEIN 2012), 2012, : 212 - 216
  • [23] Cloud classification using support vector machines
    Azimi-Sadjadi, MR
    Zekavat, SA
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 669 - 671
  • [24] Gender classification using support vector machines
    Yang, MH
    Moghaddam, B
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2000, : 471 - 474
  • [25] Classification of Performers using Support Vector Machines
    Reljin, Natasa
    Pokrajac, Dragoljub
    NEUREL 2008: NINTH SYMPOSIUM ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING, PROCEEDINGS, 2008, : 156 - +
  • [26] Pose classification using support vector machines
    Ardizzone, E
    Chella, A
    Pirrone, R
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 317 - 322
  • [27] Scene Classification Using Support Vector Machines
    Mandhala, Venkata Naresh
    Sujatha, V.
    Devi, B. Renuka
    2014 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT), 2014, : 1807 - 1810
  • [28] Texture classification using the support vector machines
    Li, ST
    Kwok, JT
    Zhu, HL
    Wang, YN
    PATTERN RECOGNITION, 2003, 36 (12) : 2883 - 2893
  • [29] Accent classification using support vector machines
    Pedersen, Carol
    Diederich, Joachim
    6TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE, PROCEEDINGS, 2007, : 444 - +
  • [30] Fuzzy Support Vector Machine with a Fuzzy Nearest Neighbor Classifier for Insect Footprint Classification
    Heo, Gyeongyong
    Klette, Reinhard
    Woo, Young Woon
    Kim, Kwang-Baek
    Kim, Nam Ho
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,