ON LOCAL STRUCTURAL STABILITY OF ONE-DIMENSIONAL SHOCKS IN RADIATION HYDRODYNAMICS

被引:0
|
作者
Tang, Pingfan [1 ]
Fang, Beixiang
Wang, Yaguang
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
radiation hydrodynamics; Euler-Boltzmann equations; Riemann problems; shock waves; EULER-BOLTZMANN EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the local structural stability of one-dimensional shock waves in radiation hydrodynamics described by the isentropic Euler-Boltzmann equations. Even though in this radiation hydrodynamics model, the radiative effects can be understood as source terms to the isentropic Euler equations of hydrodynamics, in general the radiation field has singularities propagated in an angular domain issuing from the initial point across which the density is discontinuous. This is the major difficulty in the stability analysis of shocks. Under certain assumptions on the radiation parameters, we show there exists a local weak solution to the initial value problem of the one dimensional Euler-Boltzmann equations, in which the radiation intensity is continuous, while the density and velocity are piecewise Lipschitz continuous with a strong discontinuity representing the shock-front. The existence of such a solution indicates that shock waves are structurally stable, at least local in time, in radiation hydrodynamics.
引用
收藏
页码:1 / 44
页数:44
相关论文
共 50 条
  • [41] Structure and Stability of the One-Dimensional Mapper
    Carriere, Mathieu
    Oudot, Steve
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (06) : 1333 - 1396
  • [42] THE STABILITY OF ONE-DIMENSIONAL INVERSE SCATTERING
    DORREN, HJS
    MUYZERT, EJ
    SNIEDER, RK
    [J]. INVERSE PROBLEMS, 1994, 10 (04) : 865 - 880
  • [43] STABILITY OF A ONE-DIMENSIONAL FULL VISCOUS
    Han, Xiaoying
    Qin, Yuming
    Sun, Wenlong
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (03) : 404 - 431
  • [44] On the Stability of One-Dimensional Wave Equation
    Jung, Soon-Mo
    [J]. SCIENTIFIC WORLD JOURNAL, 2013,
  • [45] ONE-DIMENSIONAL STABILITY OF AP DEFLAGRATIONS
    STRAHLE, WC
    [J]. AIAA JOURNAL, 1971, 9 (04) : 565 - &
  • [46] Structure and Stability of the One-Dimensional Mapper
    Mathieu Carrière
    Steve Oudot
    [J]. Foundations of Computational Mathematics, 2018, 18 : 1333 - 1396
  • [47] STABILITY OF ONE-DIMENSIONAL LANGMUIR SOLITONS
    KUZNETSOV, EA
    MEZENTSEV, VK
    [J]. DOKLADY AKADEMII NAUK SSSR, 1985, 282 (05): : 1110 - 1112
  • [48] ELASTIC STABILITY OF ONE-DIMENSIONAL STRUCTURES
    DUPUIS, G
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1969, 20 (01): : 94 - &
  • [49] STABILITY OF ONE-DIMENSIONAL FERROMAGNETIC MICROSTRUCTURES
    BROWN, WF
    SHTRIKMAN, S
    [J]. PHYSICAL REVIEW, 1962, 125 (03): : 825 - &
  • [50] Stability of one-dimensional array solitons
    Stepic, M
    Hadzievski, L
    Skoric, MM
    [J]. PHYSICAL REVIEW E, 2002, 65 (02)