The probable value of the Lovasz-Schrijver relaxations for maximum independent set

被引:46
|
作者
Feige, U [1 ]
Krauthgamer, R [1 ]
机构
[1] Weizmann Inst Sci, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
关键词
stable set polytope; semidefinite relaxation; lift-and-project; random graph; clique;
D O I
10.1137/S009753970240118X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Lovasz and Schrijver [SIAM J. Optim., 1 (1991), pp. 166-190] devised a lift-and-project method that produces a sequence of convex relaxations for the problem of finding in a graph an independent set ( or a clique) of maximum size. Each relaxation in the sequence is tighter than the one before it, while the first relaxation is already at least as strong as the Lovasz theta function [IEEE Trans. Inform. Theory, 25 (1979), pp. 1-7]. We show that on a random graph G(n,1/2), the value of the rth relaxation in the sequence is roughly rootn/2(r), almost surely. It follows that for those relaxations known to be efficiently computable, namely, for r=O(1), the value of the relaxation is comparable to the theta function. Furthermore, a perfectly tight relaxation is almost surely obtained only at the r=Theta(log n) relaxation in the sequence.
引用
收藏
页码:345 / 370
页数:26
相关论文
共 50 条
  • [21] INTEGRALITY GAPS OF 2-o(1) FOR VERTEX COVER SDPs IN THE LOVASZ-SCHRIJVER HIERARCHY
    Georgiou, Konstantinos
    Magen, Avner
    Pitassi, Toniann
    Tourlakis, Iannis
    SIAM JOURNAL ON COMPUTING, 2010, 39 (08) : 3553 - 3570
  • [22] Integrality gaps of 2-o(1) for vertex cover SDPs in the Lovasz-Schrijver hierarchy
    Georgiou, Konstantinos
    Magen, Avner
    Pitassi, Toniann
    Tourlakis, Iannis
    48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, : 702 - 712
  • [23] Lovasz-Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
    Bianchi, S.
    Escalante, M.
    Nasini, G.
    Tuncel, L.
    MATHEMATICAL PROGRAMMING, 2017, 162 (1-2) : 201 - 223
  • [24] On Grotschel-Lovasz-Schrijver's relaxation of stable set polytopes
    Fujie, T
    Tamura, A
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 2002, 45 (03) : 285 - 292
  • [25] Neural Maximum Independent Set
    Pontoizeau, Thomas
    Sikora, Florian
    Yger, Florian
    Cazenave, Tristan
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021, PT I, 2021, 1524 : 223 - 237
  • [26] Maximum Independent Set of Rectangles
    Chalermsook, Parinya
    Chuzhoy, Julia
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 892 - +
  • [27] Maximum Genus and Independent Set
    Dong, Guanghua
    Ren, Han
    Huang, Yuanqiu
    Wang, Ning
    ARS COMBINATORIA, 2019, 143 : 39 - 45
  • [28] The repulsive lattice gas, the independent-set polynomial, and the Lovasz local lemma
    Scott, AD
    Sokal, AD
    JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (5-6) : 1151 - 1261
  • [29] MAXIMUM VALUE OF A SET OF DETERMINANTS
    NEUTS, MF
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (02): : 190 - &
  • [30] Distributed Approximation of Maximum Independent Set and Maximum Matching
    Bar-Yehuda, Reuven
    Censor-Hillel, Keren
    Ghaffari, Mohsen
    Schwartzman, Gregory
    PROCEEDINGS OF THE ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC'17), 2017, : 165 - 174