The probable value of the Lovasz-Schrijver relaxations for maximum independent set

被引:46
|
作者
Feige, U [1 ]
Krauthgamer, R [1 ]
机构
[1] Weizmann Inst Sci, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
关键词
stable set polytope; semidefinite relaxation; lift-and-project; random graph; clique;
D O I
10.1137/S009753970240118X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Lovasz and Schrijver [SIAM J. Optim., 1 (1991), pp. 166-190] devised a lift-and-project method that produces a sequence of convex relaxations for the problem of finding in a graph an independent set ( or a clique) of maximum size. Each relaxation in the sequence is tighter than the one before it, while the first relaxation is already at least as strong as the Lovasz theta function [IEEE Trans. Inform. Theory, 25 (1979), pp. 1-7]. We show that on a random graph G(n,1/2), the value of the rth relaxation in the sequence is roughly rootn/2(r), almost surely. It follows that for those relaxations known to be efficiently computable, namely, for r=O(1), the value of the relaxation is comparable to the theta function. Furthermore, a perfectly tight relaxation is almost surely obtained only at the r=Theta(log n) relaxation in the sequence.
引用
收藏
页码:345 / 370
页数:26
相关论文
共 50 条
  • [1] Some advances on Lovasz-Schrijver semidefinite programming relaxations of the fractional stable set polytope
    Bianchi, S.
    Escalante, M.
    Nasini, G.
    Tuncel, L.
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 460 - 469
  • [2] A linear round lower bound for Lovasz-Schrijver SDP relaxations of vertex cover
    Schoenebeck, Grant
    Trevisan, Luca
    Tulsiani, Madhur
    TWENTY-SECOND ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2007, : 205 - +
  • [3] Tight Integrality Gaps for Lovasz-Schrijver LP Relaxations of Vertex Cover and Max Cut
    Schoenebeck, Grant
    Trevisan, Luca
    Tulsiani, Madhur
    STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 302 - 310
  • [4] A comparison of the Sherali-Adams, Lovasz-Schrijver, and Lasserre relaxations for 0-1 programming
    Laurent, M
    MATHEMATICS OF OPERATIONS RESEARCH, 2003, 28 (03) : 470 - 496
  • [5] An application of the Lovasz-Schrijver M(K, K) operator to the stable set problem
    Giandomenico, Monia
    Letchford, Adam N.
    Rossi, Fabrizio
    Smriglio, Stefano
    MATHEMATICAL PROGRAMMING, 2009, 120 (02) : 381 - 401
  • [6] TOWARDS STRONG NONAPPROXIMABILITY RESULTS IN THE LOVASZ-SCHRIJVER HIERARCHY
    Alekhnovich, Mikhail
    Arora, Sanjeev
    Tourlakis, Iannis
    COMPUTATIONAL COMPLEXITY, 2011, 20 (04) : 615 - 648
  • [7] New lower bounds for Vertex Cover in the Lovasz-Schrijver hierarchy
    Tourlakis, Iannis
    CCC 2006: TWENTY-FIRST ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2006, : 170 - 179
  • [8] Tighter linear and semidefinite relaxations or max-cut based on the Lovasz-Schrijver lift-and-project procedure
    Laurent, M
    SIAM JOURNAL ON OPTIMIZATION, 2001, 12 (02) : 345 - 375
  • [9] Lower bounds of static Lovasz-Schrijver calculus proofs for Tseitin tautologies
    Kojevnikov, Arist
    Itsykson, Dmitry
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, 2006, 4051 : 323 - 334
  • [10] Lovasz-Schrijver PSD-Operator on Claw-Free Graphs
    Bianchi, Silvia
    Escalante, Mariana
    Nasini, Graciela
    Wagler, Annegret
    COMBINATORIAL OPTIMIZATION, ISCO 2016, 2016, 9849 : 59 - 70