A fast direct algorithm for implementing a high-order finite element method on rectangles as applied to boundary value problems for the Poisson equation

被引:3
|
作者
Zlotnik, A. A. [1 ]
Zlotnik, I. A. [2 ]
机构
[1] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[2] Settlement Depository Co, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1064562417020089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fast direct and inverse algorithms for expansion in terms of eigenvectors of one-dimensional eigenvalue problems for a high-order finite element method (FEM) are proposed based on the fast discrete Fourier transform. They generalize logarithmically optimal Fourier algorithms for solving boundary value problems for Poisson-type equations on rectangular meshes to high-order FEM. The algorithms can be extended to the multidimensional case and can be applied to nonstationary problems.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [31] ALGORITHM HFFT - HIGH-ORDER FAST-DIRECT SOLUTION OF THE HELMHOLTZ-EQUATION
    BOISVERT, RF
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1987, 13 (03): : 235 - 249
  • [32] BOUNDARY ELEMENT METHOD WITH HIGH-ORDER TIME ELEMENT FOR TRANSIENT EDDY-CURRENT PROBLEMS
    ZHAN, QH
    CHEN, JP
    IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (02) : 595 - 598
  • [33] Fast boundary element method for the linear Poisson-Boltzmann equation
    Boschitsch, AH
    Fenley, MO
    Zhou, HX
    JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (10): : 2741 - 2754
  • [34] The Kriging integration method applied to the boundary element analysis of Poisson problems
    Narvaez, A.
    Useche, J.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 121 : 1 - 20
  • [35] High-order finite elements applied to the discrete Boltzmann equation
    Duester, Alexander
    Dernkowicz, Leszek
    Rank, Ernst
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (08) : 1094 - 1121
  • [36] A Lagrangian uniform-mesh finite element method applied to problems governed by Poisson's Equation
    Gu, Linxia
    Kumar, Ashok V.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 8, PTS A AND B: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, 2008, : 129 - 138
  • [37] A boundary element method recursive procedure applied to Poisson's problems
    Ramos, V. E. S.
    Loeffler, C. F.
    Mansur, W. J.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2017, 82 : 104 - 110
  • [38] A High-Order Numerical Method for a Nonlinear System of Second-Order Boundary Value Problems
    Xu, Minqiang
    Niu, Jing
    Guo, Li
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [39] High-order plate bending analysis based on the scaled boundary finite element method
    Man, H.
    Song, C.
    Xiang, T.
    Gao, W.
    Tin-Loi, F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 95 (04) : 331 - 360
  • [40] On the impact of triangle shapes for boundary layer problems using high-order finite element discretization
    Sun, Huafei
    Darmofal, David L.
    Haimes, Robert
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (02) : 541 - 557