A fast direct algorithm for implementing a high-order finite element method on rectangles as applied to boundary value problems for the Poisson equation

被引:3
|
作者
Zlotnik, A. A. [1 ]
Zlotnik, I. A. [2 ]
机构
[1] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[2] Settlement Depository Co, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1064562417020089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fast direct and inverse algorithms for expansion in terms of eigenvectors of one-dimensional eigenvalue problems for a high-order finite element method (FEM) are proposed based on the fast discrete Fourier transform. They generalize logarithmically optimal Fourier algorithms for solving boundary value problems for Poisson-type equations on rectangular meshes to high-order FEM. The algorithms can be extended to the multidimensional case and can be applied to nonstationary problems.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条