Solving the structure of "single-atom" catalysts using machine learning - assisted XANES analysis

被引:32
|
作者
Xiang, Shuting [1 ]
Huang, Peipei [2 ]
Li, Junying [1 ]
Liu, Yang [1 ]
Marcella, Nicholas [1 ]
Routh, Prahlad K. [1 ]
Li, Gonghu [2 ]
Frenkel, Anatoly, I [1 ,3 ]
机构
[1] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA
[2] Univ New Hampshire, Dept Chem, Durham, NH 03824 USA
[3] Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
PRINCIPAL COMPONENT ANALYSIS; RAY-ABSORPTION SPECTROSCOPY; COBALT(III) COMPLEXES; CO2; PHOTOCATALYSTS; MACROCYCLES; CONVERSION;
D O I
10.1039/d1cp05513e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
"Single-atom" catalysts (SACs) have demonstrated excellent activity and selectivity in challenging chemical transformations such as photocatalytic CO2 reduction. For heterogeneous photocatalytic SAC systems, it is essential to obtain sufficient information of their structure at the atomic level in order to understand reaction mechanisms. In this work, a SAC was prepared by grafting a molecular cobalt catalyst on a light-absorbing carbon nitride surface. Due to the sensitivity of the X-ray absorption near edge structure (XANES) spectra to subtle variances in the Co SAC structure in reaction conditions, different machine learning (ML) methods, including principal component analysis, K-means clustering, and neural network (NN), were utilized for in situ Co XANES data analysis. As a result, we obtained quantitative structural information of the SAC nearest atomic environment, thereby extending the NN-XANES approach previously demonstrated for nanoparticles and size-selective clusters.
引用
收藏
页码:5116 / 5124
页数:9
相关论文
共 50 条
  • [21] Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts
    Giulimondi, Vera
    Mitchell, Sharon
    Perez-Ramirez, Javier
    ACS CATALYSIS, 2023, 13 (05) : 2981 - 2997
  • [22] Structure Regulation of Single-atom Catalysts in Oxygen Reduction Reactions
    Gu, Yu
    Xi, Baojuan
    Li, Jiangxiao
    Xiong, Shenglin
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (05):
  • [23] Why do Single-Atom Alloys Catalysts Outperform both Single-Atom Catalysts and Nanocatalysts on MXene?
    Guan, Shuyan
    Yuan, Zhenluo
    Zhuang, Zechao
    Zhang, Huanhuan
    Wen, Hao
    Fan, Yanping
    Li, Baojun
    Wang, Dingsheng
    Liu, Baozhong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (04)
  • [24] Single-Atom Catalysts: Are You Really Single?
    Dobrota, Ana S.
    Pasti, Igor A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 16 (01): : 77 - 86
  • [25] Magnesium single-atom catalysts with superbasicity
    Xiang-Bin Shao
    Yao Nian
    Song-Song Peng
    Guo-Song Zhang
    Meng-Xuan Gu
    You Han
    Xiao-Qin Liu
    Lin-Bing Sun
    Science China(Chemistry), 2023, (06) : 1737 - 1743
  • [26] Single-Atom Catalysts for Photocatalytic Reactions
    Wang, Qiushi
    Zhang, Dafeng
    Chen, Yong
    Fu, Wen-Fu
    Lv, Xiao-Jun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (07) : 6430 - 6443
  • [27] Single-Atom Catalysts Boosted Electrochemiluminescence
    Wang, Dan-Ling
    Zhao, Wei
    CHEMPLUSCHEM, 2025,
  • [28] Magnesium single-atom catalysts with superbasicity
    XiangBin Shao
    Yao Nian
    SongSong Peng
    GuoSong Zhang
    MengXuan Gu
    You Han
    XiaoQin Liu
    LinBing Sun
    Science China(Chemistry), 2023, 66 (06) : 1737 - 1743
  • [29] Stability of single-atom catalysts for electrocatalysis
    Hu, Hao
    Wang, Jiale
    Tao, Peng
    Song, Chengyi
    Shang, Wen
    Deng, Tao
    Wu, Jianbo
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 5835 - 5849
  • [30] Single-Atom Catalysts in Catalytic Biomedicine
    Xiang, Huijing
    Feng, Wei
    Chen, Yu
    ADVANCED MATERIALS, 2020, 32 (08)