In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer

被引:131
|
作者
Chen, Tianjun [1 ]
Song, Chengjie [1 ]
Fan, Mingshan [1 ]
Hong, Yuanzhi [2 ]
Hu, Bo [1 ]
Yu, Longbao [1 ]
Shi, Weidong [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
关键词
Interfacial charge transfer; CuS; g-C3N4; Hydrogen production; CARBON NITRIDE SEMICONDUCTORS; VISIBLE-LIGHT IRRADIATION; HYDROGEN-PRODUCTION; EFFICIENT; EVOLUTION; HETEROSTRUCTURES; PERFORMANCE; G-C3N4; HETEROJUNCTION; GENERATION;
D O I
10.1016/j.ijhydene.2017.03.188
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, novel CuS/g-C3N4 composite photocatalysts were successfully prepared via a simple in-situ growth method. CuS nanoparticles, with an average diameter of ca.10 nm, were well dispersed on the surface of g-C3N4, revealing that g-C3N4 nanosheets were promising support for in-situ growth of nanosize materials. The CuS/g-C3N4 composites exhibited highly enhanced visible light photocatalytic H-2 evolution from water -splitting compared to pure g-C3N4. The optimum photocatalytic activity of 2 wt% CuS/g-C3N4 composite photocatalytic H-2 evolution was about 13.76 times higher than pure g-C3N4. The enhanced photocatalytic activity is attributed to the interfacial charge transfer (IFCT). In this system, electrons in the valence band (VB) of g-C3N4 can transfer directly to CuS clusters, causing the reduction of partial CuS to Cu2S, which can act as an electron sink and co-catalyst to promote the separation and transfer of photo-generated electrons. The accumulated photoinduced electrons in CuS/Cu2S clusters could effectively reduce H+ to produce H-2. This work provides a possibility for constructing low-cost CuS as a substitute for noble metals in the photocatalytic production of H-2 via a facile method based on g-C3N4. (C) 2017 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:12210 / 12219
页数:10
相关论文
共 50 条
  • [41] Fabrication of hierarchical g-C3N4/MXene-AgNPs nanocomposites with enhanced photocatalytic performances
    Ding, Xiaohui
    Li, Chunhu
    Wang, Liang
    Feng, Lijuan
    Han, Dezhi
    Wang, Wentai
    MATERIALS LETTERS, 2019, 247 : 174 - 177
  • [42] In situ g-C3N4 self-sacrificial synthesis of a g-C3N4/LaCO3OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal
    Wang, Zhenyu
    Huang, Yu
    Chen, Long
    Chen, Meijuan
    Cao, Junji
    Ho, Wingkei
    Lee, Shun Cheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (03) : 972 - 981
  • [43] Mesoporous implantable Pt/SrTiO3:C,N nanocuboids delivering enhanced photocatalytic H2-production activity via plasmon-induced interfacial electron transfer
    Tamiolakis, Ioannis
    Liu, Dong
    Xiao, Fang-Xing
    Xie, Jian
    Papadas, Loannis T.
    Salim, Teddy
    Liu, Bin
    Zhang, Qichun
    Choulis, Stelios A.
    Armatas, Gerasimos S.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 236 : 338 - 347
  • [44] Boosting interfacial S-scheme charge transfer and photocatalytic H2-production activity of 1D/2D WO3/g-C3N4 heterojunction by molecular benzene-rings integration
    Mo, Xiaojie
    Zhang, Xiaohan
    Lin, Biyun
    Ning, Chuangyu
    Li, Ming
    Liao, Hua
    Chen, Zhihong
    Wang, Xin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 145 : 174 - 184
  • [45] Fabrication of surface hydroxyl modified g-C3N4 with enhanced photocatalytic oxidation activity
    Li, Zizhen
    Meng, Xiangchao
    Zhang, Zisheng
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (15) : 3979 - 3993
  • [46] In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity
    Qiao, Qing
    Huang, Wei-Qing
    Li, Yuan-Yuan
    Li, Bo
    Hu, Wangyu
    Peng, Wei
    Fan, Xiaoxing
    Huang, Gui-Fang
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (23) : 15882 - 15894
  • [47] In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity
    Qing Qiao
    Wei-Qing Huang
    Yuan-Yuan Li
    Bo Li
    Wangyu Hu
    Wei Peng
    Xiaoxing Fan
    Gui-Fang Huang
    Journal of Materials Science, 2018, 53 : 15882 - 15894
  • [48] Synthesis of g-C3N4/CuS Heterojunction with Enhanced Photocatalytic Activity Under Visible-Light
    Wang, Fan
    Zeng, Qingru
    Tang, Jinping
    Peng, Liang
    Shao, Jihai
    Luo, Si
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (09) : 5896 - 5905
  • [49] Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production
    Alcudia-Ramos, M. A.
    Fuentez-Torres, M. O.
    Ortiz-Chi, F.
    Espinosa-Gonzalez, C. G.
    Hernandez-Como, N.
    Garcia-Zaleta, D. S.
    Kesarla, M. K.
    Torres-Torres, J. G.
    Collins-Martinez, V.
    Godavarthi, S.
    CERAMICS INTERNATIONAL, 2020, 46 (01) : 38 - 45
  • [50] Interfacial charge transfer and enhanced photocatalytic mechanisms for Pt nanoparticles loaded onto sulfur-doped g-C3N4 in H2 evolution
    Li, Zizhen
    Yao, Yuan
    Gao, Xinyu
    Bai, Hongcun
    Meng, Xiangchao
    MATERIALS TODAY ENERGY, 2021, 22