Big data analytics on social networks for real-time depression detection

被引:17
|
作者
Angskun, Jitimon [1 ,2 ]
Tipprasert, Suda [1 ]
Angskun, Thara [1 ,2 ]
机构
[1] Suranaree Univ Technol, Sch Informat Technol, Nakhon Ratchasima, Thailand
[2] Suranaree Univ Technol, DIGITECH, Nakhon Ratchasima, Thailand
关键词
Big data analytics; Depression detection; Social networks;
D O I
10.1186/s40537-022-00622-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
During the coronavirus pandemic, the number of depression cases has dramatically increased. Several depression sufferers disclose their actual feeling via social media. Thus, big data analytics on social networks for real-time depression detection is proposed. This research work detected the depression by analyzing both demographic characteristics and opinions of Twitter users during a two-month period after having answered the Patient Health Questionnaire-9 used as an outcome measure. Machine learning techniques were applied as the detection model construction. There are five machine learning techniques explored in this research which are Support Vector Machine, Decision Tree, Naive Bayes, Random Forest, and Deep Learning. The experimental results revealed that the Random Forest technique achieved higher accuracy than other techniques to detect the depression. This research contributes to the literature by introducing a novel model based on analyzing demographic characteristics and text sentiment of Twitter users. The model can capture depressive moods of depression sufferers. Thus, this work is a step towards reducing depression-induced suicide rates.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] GPGPU for Real-Time Data Analytics
    He, Bingsheng
    Huynh Phung Huynh
    Mong, Rick Goh Siow
    PROCEEDINGS OF THE 2012 IEEE 18TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2012), 2012, : 945 - +
  • [32] Near Real-Time Big Data Analysis on Vehicular Networks
    Daniel, Alfred
    Paul, Anand
    Ahmad, Awais
    PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON SOFT-COMPUTING AND NETWORKS SECURITY (ICSNS 2015), 2015,
  • [33] Real Time Threat Detection System in Cloud using Big Data Analytics
    More, Rohit
    Unakal, Anand
    Kulkarni, Vinod
    Goudar, R. H.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 1262 - 1264
  • [34] Real-time big data processing for anomaly detection: A Survey
    Habeeb, Riyaz Ahamed Ariyaluran
    Nasaruddin, Fariza
    Gani, Abdullah
    Hashem, Ibrahim Abaker Targio
    Ahmed, Ejaz
    Imran, Muhammad
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2019, 45 : 289 - 307
  • [35] Unsupervised Network Anomaly Detection in Real-Time on Big Data
    Dromard, Juliette
    Roudiere, Gilles
    Owezarski, Philippe
    NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS (ADBIS 2015), 2015, 539 : 197 - 206
  • [36] Data Systems Fault Coping for Real-time Big Data Analytics Required Architectural Crucibles
    Cohen, Stephen
    Money, William
    PROCEEDINGS OF THE 50TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2017, : 1023 - 1032
  • [37] Big Data Real-Time Clickstream Data Ingestion Paradigm for E-Commerce Analytics
    Pal, Gautam
    Li, Gangmin
    Atkinson, Katie
    2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [38] Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams
    Dubuc, Timothee
    Stahl, Frederic
    Roesch, Etienne B.
    IEEE ACCESS, 2021, 9 : 15351 - 15374
  • [39] Real-Time Data ETL Framework for Big Real-Time Data Analysis
    Li, Xiaofang
    Mao, Yingchi
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 1289 - 1294
  • [40] Near real-time big data analytics for NFC-enabled logistics trajectories
    Karim, Lamia
    Boulmakoul, Azedine
    Lbath, Ahmed
    PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL CONFERENCE ON LOGISTICS OPERATIONS MANAGEMENT (GOL'16), 2016,