Big data analytics on social networks for real-time depression detection

被引:17
|
作者
Angskun, Jitimon [1 ,2 ]
Tipprasert, Suda [1 ]
Angskun, Thara [1 ,2 ]
机构
[1] Suranaree Univ Technol, Sch Informat Technol, Nakhon Ratchasima, Thailand
[2] Suranaree Univ Technol, DIGITECH, Nakhon Ratchasima, Thailand
关键词
Big data analytics; Depression detection; Social networks;
D O I
10.1186/s40537-022-00622-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
During the coronavirus pandemic, the number of depression cases has dramatically increased. Several depression sufferers disclose their actual feeling via social media. Thus, big data analytics on social networks for real-time depression detection is proposed. This research work detected the depression by analyzing both demographic characteristics and opinions of Twitter users during a two-month period after having answered the Patient Health Questionnaire-9 used as an outcome measure. Machine learning techniques were applied as the detection model construction. There are five machine learning techniques explored in this research which are Support Vector Machine, Decision Tree, Naive Bayes, Random Forest, and Deep Learning. The experimental results revealed that the Random Forest technique achieved higher accuracy than other techniques to detect the depression. This research contributes to the literature by introducing a novel model based on analyzing demographic characteristics and text sentiment of Twitter users. The model can capture depressive moods of depression sufferers. Thus, this work is a step towards reducing depression-induced suicide rates.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Big data analytics on social networks for real-time depression detection
    Jitimon Angskun
    Suda Tipprasert
    Thara Angskun
    Journal of Big Data, 9
  • [2] BRNADS: Big data Real-Time Node Anomaly Detection in Social Networks
    Manjunatha, H. C.
    Mohanasundaram, R.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INVENTIVE SYSTEMS AND CONTROL (ICISC 2018), 2018, : 929 - 932
  • [3] Real-Time Big Data Analytics: Applications and Challenges
    Mohamed, Nader
    Al-Jaroodi, Jameela
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 305 - 310
  • [4] Real-Time Large-Scale Big Data Networks Analytics and Visualization Architecture
    Chopade, Pravin
    Zhan, Justin
    Roy, Kaushik
    Flurchick, Kenneth
    2015 12TH INTERNATIONAL CONFERENCE & EXPO ON EMERGING TECHNOLOGIES FOR A SMARTER WORLD (CEWIT), 2015,
  • [5] Real-time misfire detection of large gas engine using big data analytics
    Szabo, Jozsef Z.
    Bakucz, Peter
    2018 IEEE 16TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY 2018), 2018, : 215 - 220
  • [6] A Methodology of Real-Time Data Fusion for Localized Big Data Analytics
    Jabbar, Sohail
    Malik, Kaleem R.
    Ahmad, Mudassar
    Aldabbas, Omar
    Asif, Muhammad
    Khalid, Shehzad
    Han, Kijun
    Ahmed, Syed Hassan
    IEEE ACCESS, 2018, 6 : 24510 - 24520
  • [7] Logical big data integration and near real-time data analytics
    Silva, Bruno
    Moreira, Jose
    Costa, Rogerio Luis de C.
    DATA & KNOWLEDGE ENGINEERING, 2023, 146
  • [8] Big Data Stream Computing in Healthcare Real-Time Analytics
    Ta, Van-Dai
    Liu, Chuan-Ming
    Nkabinde, Goodwill Wandile
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2016), 2016, : 37 - 42
  • [9] A Survey on Real-time Big Data Analytics: Applications and Tools
    Yadranjiaghdam, Babak
    Pool, Nathan
    Tabrizi, Nasseh
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 404 - 409
  • [10] An incremental approach for real-time Big Data visual analytics
    Garcia, Ignacio
    Casado, Ruben
    Bouchachia, Abdelhamid
    2016 IEEE 4TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD WORKSHOPS (FICLOUDW), 2016, : 177 - 182