Sparse approximate matrix-matrix multiplication for density matrix purification with error control

被引:1
|
作者
Artemov, Anton G. [1 ]
Rubensson, Emanuel H. [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Div Sci Comp, SE-75105 Uppsala, Sweden
关键词
Electronic structure calculations; Density matrix methods; Error control; Sparse matrices; EXPANSIONS;
D O I
10.1016/j.jcp.2021.110354
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an accelerated density matrix purification scheme with error control. The method makes use of the scale-and-fold acceleration technique and screening of submatrix products in the block-sparse matrix-matrix multiplies to reduce the computational cost. An error bound and a parameter sweep are combined to select a threshold value for the screening, such that the error can be controlled. We evaluate the performance of the method in comparison to purification without acceleration and without submatrix product screening. (C) 2021 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hypergraph partitioning for sparse matrix-matrix multiplication
    Ballard G.
    Druinsky A.
    Knight N.
    Schwartz O.
    [J]. ACM Transactions on Parallel Computing, 2016, 3 (03) : 1 - 34
  • [2] PERFORMANCE EVALUATION OF SPARSE MATRIX-MATRIX MULTIPLICATION
    Jain-Mendon, Shweta
    Sass, Ron
    [J]. 2013 23RD INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL 2013) PROCEEDINGS, 2013,
  • [3] Optimizing Sparse Matrix-Matrix Multiplication for the GPU
    Dalton, Steven
    Olson, Luke
    Bell, Nathan
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2015, 41 (04):
  • [4] Sparse Matrix-Matrix Multiplication on Modern Architectures
    Matam, Kiran
    Indarapu, Siva Rama Krishna Bharadwaj
    Kothapalli, Kishore
    [J]. 2012 19TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC), 2012,
  • [5] Adaptive Sparse Matrix-Matrix Multiplication on the GPU
    Winter, Martin
    Mlakar, Daniel
    Zayer, Rhaleb
    Seidel, Hans-Peter
    Steinberger, Markus
    [J]. PROCEEDINGS OF THE 24TH SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING (PPOPP '19), 2019, : 68 - 81
  • [6] Accelerators for Sparse Matrix-Matrix Multiplication: A Review
    Noble, G.
    Nalesh, S.
    Kala, S.
    [J]. 2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [7] Optimizing sparse general matrix-matrix multiplication for DCUs
    Guo, Hengliang
    Wang, Haolei
    Chen, Wanting
    Zhang, Congxiang
    Han, Yubo
    Zhu, Shengguang
    Zhang, Dujuan
    Guo, Yang
    Shang, Jiandong
    Wan, Tao
    Li, Qingyang
    Wu, Gang
    [J]. JOURNAL OF SUPERCOMPUTING, 2024, 80 (14): : 20176 - 20200
  • [8] A Systematic Survey of General Sparse Matrix-matrix Multiplication
    Gao, Jianhua
    Ji, Weixing
    Chang, Fangli
    Han, Shiyu
    Wei, Bingxin
    Liu, Zeming
    Wang, Yizhuo
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (12)
  • [9] Scaling sparse matrix-matrix multiplication in the accumulo database
    Demirci, Gunduz Vehbi
    Aykanat, Cevdet
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2020, 38 (01) : 31 - 62
  • [10] Scaling sparse matrix-matrix multiplication in the accumulo database
    Gunduz Vehbi Demirci
    Cevdet Aykanat
    [J]. Distributed and Parallel Databases, 2020, 38 : 31 - 62