Accelerators for Sparse Matrix-Matrix Multiplication: A Review

被引:1
|
作者
Noble, G. [1 ,2 ]
Nalesh, S. [3 ]
Kala, S. [1 ]
机构
[1] Indian Inst Informat Technol, Dept Elect & Commun Engn, Kottayam, Kerala, India
[2] Fed Inst Sci & Technol, Dept Elect & Commun Engn, Kochi, India
[3] Cochin Univ Sci & Technol, Dept Elect, Cochin, Kerala, India
关键词
Sparse matrix multiplication; FPGA accelerator; Sparse formats;
D O I
10.1109/INDICON56171.2022.10039979
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The rising popularity of deep learning algorithms demands special accelerators for matrix-matrix multiplication. Most of the matrix multipliers are designed based on the systolic array architectures and are not suitable for sparse operations. Compared to the dense equivalent, sparse operations are complex and require additional circuitry for implementation. The irregular memory access pattern limits the performance of sparse operations. This paper reviews latest state-of-the-art sparse matrix-matrix multipliers and compares their performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Hypergraph partitioning for sparse matrix-matrix multiplication
    Ballard G.
    Druinsky A.
    Knight N.
    Schwartz O.
    [J]. ACM Transactions on Parallel Computing, 2016, 3 (03) : 1 - 34
  • [2] PERFORMANCE EVALUATION OF SPARSE MATRIX-MATRIX MULTIPLICATION
    Jain-Mendon, Shweta
    Sass, Ron
    [J]. 2013 23RD INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL 2013) PROCEEDINGS, 2013,
  • [3] Optimizing Sparse Matrix-Matrix Multiplication for the GPU
    Dalton, Steven
    Olson, Luke
    Bell, Nathan
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2015, 41 (04):
  • [4] Sparse Matrix-Matrix Multiplication on Modern Architectures
    Matam, Kiran
    Indarapu, Siva Rama Krishna Bharadwaj
    Kothapalli, Kishore
    [J]. 2012 19TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC), 2012,
  • [5] Adaptive Sparse Matrix-Matrix Multiplication on the GPU
    Winter, Martin
    Mlakar, Daniel
    Zayer, Rhaleb
    Seidel, Hans-Peter
    Steinberger, Markus
    [J]. PROCEEDINGS OF THE 24TH SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING (PPOPP '19), 2019, : 68 - 81
  • [6] Optimizing sparse general matrix-matrix multiplication for DCUs
    Guo, Hengliang
    Wang, Haolei
    Chen, Wanting
    Zhang, Congxiang
    Han, Yubo
    Zhu, Shengguang
    Zhang, Dujuan
    Guo, Yang
    Shang, Jiandong
    Wan, Tao
    Li, Qingyang
    Wu, Gang
    [J]. JOURNAL OF SUPERCOMPUTING, 2024, 80 (14): : 20176 - 20200
  • [7] A Systematic Survey of General Sparse Matrix-matrix Multiplication
    Gao, Jianhua
    Ji, Weixing
    Chang, Fangli
    Han, Shiyu
    Wei, Bingxin
    Liu, Zeming
    Wang, Yizhuo
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (12)
  • [8] Scaling sparse matrix-matrix multiplication in the accumulo database
    Demirci, Gunduz Vehbi
    Aykanat, Cevdet
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2020, 38 (01) : 31 - 62
  • [9] Scaling sparse matrix-matrix multiplication in the accumulo database
    Gunduz Vehbi Demirci
    Cevdet Aykanat
    [J]. Distributed and Parallel Databases, 2020, 38 : 31 - 62
  • [10] Parallel Efficient Sparse Matrix-Matrix Multiplication on Multicore Platforms
    Patwary, Md. Mostofa Ali
    Satish, Nadathur Rajagopalan
    Sundaram, Narayanan
    Park, Jongsoo
    Anderson, Michael J.
    Vadlamudi, Satya Gautam
    Das, Dipankar
    Pudov, Sergey G.
    Pirogov, Vadim O.
    Dubey, Pradeep
    [J]. HIGH PERFORMANCE COMPUTING, ISC HIGH PERFORMANCE 2015, 2015, 9137 : 48 - 57