Accelerators for Sparse Matrix-Matrix Multiplication: A Review

被引:1
|
作者
Noble, G. [1 ,2 ]
Nalesh, S. [3 ]
Kala, S. [1 ]
机构
[1] Indian Inst Informat Technol, Dept Elect & Commun Engn, Kottayam, Kerala, India
[2] Fed Inst Sci & Technol, Dept Elect & Commun Engn, Kochi, India
[3] Cochin Univ Sci & Technol, Dept Elect, Cochin, Kerala, India
关键词
Sparse matrix multiplication; FPGA accelerator; Sparse formats;
D O I
10.1109/INDICON56171.2022.10039979
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The rising popularity of deep learning algorithms demands special accelerators for matrix-matrix multiplication. Most of the matrix multipliers are designed based on the systolic array architectures and are not suitable for sparse operations. Compared to the dense equivalent, sparse operations are complex and require additional circuitry for implementation. The irregular memory access pattern limits the performance of sparse operations. This paper reviews latest state-of-the-art sparse matrix-matrix multipliers and compares their performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Predicting optimal sparse general matrix-matrix multiplication algorithm on GPUs
    Wei, Bingxin
    Wang, Yizhuo
    Chang, Fangli
    Gao, Jianhua
    Ji, Weixing
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2024, 38 (03): : 245 - 259
  • [22] Generalized Sparse Matrix-Matrix Multiplication for Vector Engines and Graph Applications
    Li, Jiayu
    Wang, Fugang
    Araki, Takuya
    Qiu, Judy
    [J]. PROCEEDINGS OF MCHPC'19: 2019 IEEE/ACM WORKSHOP ON MEMORY CENTRIC HIGH PERFORMANCE COMPUTING (MCHPC), 2019, : 33 - 42
  • [23] A framework for general sparse matrix-matrix multiplication on GPUs and heterogeneous processors
    Liu, Weifeng
    Vinter, Brian
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2015, 85 : 47 - 61
  • [24] Multithreaded sparse matrix-matrix multiplication for many-core and GPU architectures
    Deveci, Mehmet
    Trott, Christian
    Rajamanickam, Sivasankaran
    [J]. PARALLEL COMPUTING, 2018, 78 : 33 - 46
  • [25] Register-based Implementation of the Sparse General Matrix-Matrix Multiplication on GPUs
    Liu, Junhong
    He, Xin
    Liu, Weifeng
    Tan, Guangming
    [J]. ACM SIGPLAN NOTICES, 2018, 53 (01) : 407 - 408
  • [26] Exploiting Locality in Sparse Matrix-Matrix Multiplication on Many-Core Architectures
    Akbudak, Kadir
    Aykanat, Cevdet
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2017, 28 (08) : 2258 - 2271
  • [27] Communication-Avoiding Parallel Sparse-Dense Matrix-Matrix Multiplication
    Koanantakool, Penporn
    Azad, Ariful
    Buluc, Aydin
    Morozov, Dmitriy
    Oh, Sang-Yun
    Oliker, Leonid
    Yelick, Katherine
    [J]. 2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2016), 2016, : 842 - 853
  • [28] spECK: Accelerating GPU Sparse Matrix-Matrix Multiplication through Lightweight Analysis
    Parger, Mathias
    Winter, Martin
    Mlakar, Daniel
    Steinberger, Markus
    [J]. PROCEEDINGS OF THE 25TH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING (PPOPP '20), 2020, : 362 - 375
  • [29] GPU-ACCELERATED SPARSE MATRIX-MATRIX MULTIPLICATION BY ITERATIVE ROW MERGING
    Gremse, Felix
    Hoefter, Andreas
    Schwen, Lars Ole
    Kiessling, Fabian
    Naumann, Uwe
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : C54 - C71
  • [30] TileSpGEMM: A Tiled Algorithm for Parallel Sparse General Matrix-Matrix Multiplication on GPUs
    Niu, Yuyao
    Lu, Zhengyang
    Ji, Haonan
    Song, Shuhui
    Jin, Zhou
    Liu, Weifeng
    [J]. PPOPP'22: PROCEEDINGS OF THE 27TH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING, 2022, : 90 - 106