A Multisensor Multi-Bernoulli Filter

被引:78
|
作者
Saucan, Augustin-Alexandru [1 ]
Coates, Mark J. [1 ]
Rabbat, Michael [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0G4, Canada
关键词
Random finite sets; multi-sensor multi-Bernoulli filter; multi-sensor and multi-target tracking; MULTITARGET; FUSION;
D O I
10.1109/TSP.2017.2723348
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we derive a multisensor multi-Bernoulli (MS-MeMBer) filter for multitarget tracking. Measurements from multiple sensors are employed by the proposed filter to update a set of tracks modeled as a multi-Bernoulli random finite set. An exact implementation of the MS-MeMBer update procedure is computationally intractable. We propose an efficient approximate implementation by using a greedy measurement partitioning mechanism. The proposed filter allows for Gaussian mixture or particle filter implementations. Numerical simulations conducted for both linear-Gaussian and nonlinear models highlight the improved accuracy of the MS-MeMBer filter and its reduced computational load with respect to the multisensor cardinalized probability hypothesis density filter and the iterated-corrector cardinality-balanced multi-Bernoulli filter especially for low probabilities of detection.
引用
收藏
页码:5495 / 5509
页数:15
相关论文
共 50 条
  • [1] The Labeled Multi-Bernoulli Filter
    Reuter, Stephan
    Vo, Ba-Tuong
    Vo, Ba-Ngu
    Dietmayer, Klaus
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (12) : 3246 - 3260
  • [2] Multisensor Poisson Multi-Bernoulli Filter for Joint Target-Sensor State Tracking
    Frohle, Markus
    Lindberg, Christopher
    Granstrom, Karl
    Wymeersch, Henk
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2019, 4 (04): : 609 - 621
  • [3] The Adaptive Labeled Multi-Bernoulli Filter
    Danzer, Andreas
    Reuter, Stephan
    Dietmayer, Klaus
    [J]. 2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 1531 - 1538
  • [4] THE BEST FITTING MULTI-BERNOULLI FILTER
    Williams, Jason L.
    [J]. 2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 220 - 223
  • [5] A Partitioned Poisson Multi-Bernoulli Filter
    Su, Zhenzhen
    Tian, Cong
    Ji, Hongbing
    Zhang, Yongquan
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (14) : 16002 - 16012
  • [6] Multi-Bernoulli filter for superpositional sensors
    Nannuru, Santosh
    Coates, Mark
    [J]. 2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 1632 - 1637
  • [7] Bernoulli merging for the Poisson multi-Bernoulli mixture filter
    Fontana, Marco
    Garcia-Fernandez, Angel F.
    Maskell, Simon
    [J]. PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 262 - 269
  • [8] The Labeled Multi-Bernoulli SLAM Filter
    Deusch, Hendrik
    Reuter, Stephan
    Dietmayer, Klaus
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) : 1561 - 1565
  • [9] An IGGM-Based Poisson Multi-Bernoulli Filter and its Application to Distributed Multisensor Fusion
    Li, Guchong
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (04) : 3666 - 3677
  • [10] The Spline Multi-Target Multi-Bernoulli Filter
    Chen, Yiqi
    Wei, Ping
    Li, Gaiyou
    Gao, Lin
    Li, Yuansheng
    [J]. PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 119 - 124