Using a model based on the totally asymmetric exclusion process, we investigate the effects of slow codons along messenger RNA. Ribosome density profiles near neighboring clusters of slow codons interact, enhancing suppression of ribosome throughput when such bottlenecks are closely spaced. Increasing the slow codon cluster size beyond similar to3-4 codons does not significantly reduce the ribosome current. Our results are verified by both extensive Monte Carlo simulations and numerical calculation, and provide a biologically motivated explanation for the experimentally observed clustering of low-usage codons.